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Abstract

Atomic systems that display a linear or weakly nonlinear interaction with light,

such as that occurring in typical optical ampliÞers and lasers, are well known

and well understood. However, when the interaction between light and matter

becomes highly nonlinear and the light and matter strongly couple, the systems

become much more difficult to understand both theoretically and experimen-

tally.

One example of a strongly coupled, highly nonlinear system is the two-

photon laser that is based on the two-photon stimulated emission process.

This laser has intrigued theorists and experimentalists alike over the past three

decades because of the challenges in explaining the interactions taking place

in the device as well as the possibilities for novel and potentially useful be-

havior. Research concerning two-photon lasers has been hindered, however,

by the difficulties in constructing such a laser. Most two-photon gain media

prove unsuitable due to small gain and the occurrence of destructive competing

nonlinear effects.

I have developed a new two-photon gain medium that overcomes these dif-

Þculties; it displays large, spectrally-resolved two-photon gain with few com-

peting effects. It consists of a laser-driven potassium vapor in which the origin
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of the gain is due to the two-photon Raman scattering process. The two-

photon gain feature is identiÞed by performing spectroscopy of the laser-driven

potassium vapor. I observe 30% two-photon optical ampliÞcation, which is two

orders of magnitude larger than previously observed gain.

To complement the experimental observations, I have developed a theo-

retical model of the two-photon Raman gain medium using the semi-classical

density-matrix formalism. The predictions of the model are in qualitative

agreement with the experimentally observed frequency- and intensity-dependence

of the two-photon gain.

I also describe a simpliÞed rate-equation model of two-photon lasers through

which I explore their steady-state and transient behavior. The model highlights

the novel threshold behavior of two-photon lasers and the need to inject an

external Þeld to initiate lasing.

This work, both theoretical and experimental, provides the Þrst step toward

a robust experimental realization of a two-photon laser.
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Chapter 1

Introduction

The Þeld of nonlinear optics encompasses the study of the optical properties of

materials in the presence of intense electromagnetic radiation. Interest in this

Þeld has grown considerably since its birth in the early sixties as advances have

been made toward an understanding of basic nonlinear optical effects. The Þeld

now includes fundamental studies of the interaction of light with matter as well

as diverse applications such as laser development, frequency conversion, phase

conjugation, electro-optic modulation, and optical Þber technology.

One interesting nonlinear optical device is the two-photon laser. Like all

lasers, a two-photon laser consists of an externally pumped gain medium and

a resonant cavity surrounding the gain medium, as shown schematically in

Fig. 1.1. The gain is based on the two-photon stimulated emission process,

which is a generalization of the one-photon stimulated emission used in typical

one-photon lasers. However, nonlinearities inherent in two-photon stimulated

emission cause the two-photon laser to have a number of different, and perhaps

useful, properties in comparison to other light sources, as described in the

following sections. Despite great interest in two-photon lasers due to their

1
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Figure 1.1: Symbolic illustration of a two-photon laser. Elimination of the
mirrors leaves a two-photon ampliÞer.

expected novel properties, there has been limited success in the realization

of practical two-photon lasers in the years since they were Þrst proposed [1,

2]. This is in large part due to the small two-photon gain exhibited by most

physical systems.

This thesis describes experimental and theoretical investigations of a new

two-photon gain medium where the origin of the gain is a process I call two-

photon stimulated emission. I observe approximately 30% two-photon opti-

cal ampliÞcation of a probe laser Þeld propagating through a vapor of laser-

pumped potassium atoms, which is 300 times larger than that of previously

reported continuous-wave two-photon ampliÞcation. This result represents a

breakthrough which should make it easier to conduct precise studies of the

photon statistics of this highly nonlinear quantum ampliÞer and to develop

and characterize two-photon lasers based on this new gain medium.
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Figure 1.2: (a) The one-photon stimulated emission process. (b) The
two-photon stimulated emission process.

1.1 Two-photon ampliÞcation

In order to develop a laser based upon two-photon gain, one Þrst needs to

develop and optimize a two-photon gain medium. On a microscopic level, the

ampliÞcation of light results from a complicated interplay of light-matter in-

teractions, one of which is the stimulated emission process. In order to better

explain two-photon gain, which is based on a two-photon stimulated emission

process, I compare and contrast one- and two-photon stimulated emission ef-

fects.

In one-photon ampliÞers and lasers, light is ampliÞed upon passing through

the gain medium by the one-photon stimulated emission process shown schemat-

ically in Fig. 1.2a. Here I consider the interaction of radiation with an atomic

medium, where each atom has a pair of bound-state energy levels | b0 > at

energy Eb0 and | a0 > at energy Ea0 , with ~ωb0a0 = Eb0 − Ea0 . If the atom is

initially in the state | b0 > (due to a pumping process), a radiation Þeld at
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frequency ω ' ωb0a0 induces the atom to make a transition from the upper

state | b0 > to the lower state | a0 >. Most importantly for our purposes, the
photons scattered by the atom in this process will have the same frequency

and direction as the incident photon. This process gives laser light coherence

properties much different than random light [3].

The one-photon stimulated emission rate for Þrst-order optical transitions

between discrete atomic states | b0 > and | a0 > is given by

R1−γ = (
8π

~2
) |µb0a0 |2 |E(r, t)|2 δ(ωb0a0 − ω) , (1.1)

where the electric dipole matrix element is denoted by µij = hi | µ | ji and I
use an electric Þeld of the form E(r, t) = E(r, t) exp[−iωt]+c.c. The stimulated
emission rate is proportional to the incident intensity (and hence the photon

ßux) through I = (c/2π) |E(r, t)|2 and proceeds most efficiently when: (1) the
frequency of the incident photon ω is equal to the transition frequency ωb0a0 ;

and (2) when the states have opposite parity and are hence connected by an

allowed electric dipole transition matrix element.

In contrast, the gain in two-photon ampliÞers and lasers is due to the two-

photon stimulated emission process shown schematically in Fig. 1.2b. In this

process, two incident photons stimulate an atom from the upper state | b >
to the lower state | a > and four photons are scattered by the atom. Note

that the frequencies ω0 and ω00 of the incident photons can take on any value

so long as ω0+ ω00 ' ωba, where ωba is the two�photon transition frequency.

Throughout the rest of the thesis, however, I assume for simplicity that there

is only a single frequency of light stimulating the transition, and hence that

ω0 = ω00 ≡ ω ' ωba/2.
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In order to have a basis for comparison with one-photon transitions, con-

sider degenerate two-photon transitions which take an atom from state | b > to
| a > via a two-photon process through some real intermediate state | i >. The
transition rate in second order for this process (assuming dipole interactions)

is

R2−γ = (
32π

~2
)
|µbi|2

¯̄̄
µig

¯̄̄2 |E(r, t)|4
Ei −Ea − ~ω δ(ωba − 2ω) . (1.2)

Note that in this case, the two-photon stimulated emission rate is proportional

to the square of the incident intensity. The emission process proceeds most

efficiently when the states have the same parity (not connected by an allowed

electric dipole transition matrix element) and when the real intermediate level

is close to the virtual level of the two-photon transition (Ei −Ea − ~ω small).
Additionally, the four scattered photons have the same frequency and direction

as the two incident photons. The two-photon stimulated emission process leads

to coherence properties different than those of normal one-photon ampliÞers

and lasers, a fact which will be discussed more as I progress.

The two-photon stimulated emission on which the ampliÞer or laser is based

serves as the most fundamental difference between two-photon ampliÞers and

lasers and standard one-photon ampliÞers and lasers. The nonlinearities inher-

ent in this stimulated emission process also give two-photon lasers and ampli-

Þers a host of interesting properties and novel behaviors which provide a strong

motivation for studying them in some detail.

1.2 Motivation for the Current Work

In the most fundamental sense, development of two�photon devices excites re-

searchers because, in the same way that the pioneers of old set off to explore



6

the unknown, it investigates the scientiÞc frontier. Yet climbing a mountain

simply �because it is there� is not an entirely satisfying justiÞcation; similarly,

building a two-photon ampliÞer �because we can� leaves something to be de-

sired. In fact, the two-photon ampliÞer and laser offer rich and varied systems

that challenge our understanding of the interaction of light with matter. The

two-photon laser in particular is a highly nonlinear, far from equilibrium sys-

tem that cannot be analyzed using standard perturbation techniques. Both

the two-photon laser and ampliÞer represent an entirely new class of quantum

optical device that promise to display a wealth of new and exciting nonlinear

behavior. The following sections summarize a few of these behaviors, some of

which exhibit potential to be harnessed in a variety of scientiÞc and technolog-

ical Þelds.

1.2.1 Intensity dependent gain

One immediate consequence of the scaling of the two�photon stimulated emis-

sion rate with the incident photon ßux (see section 1.1) is that the gain resulting

from a two-photon process is intensity dependent. Consider a beam of light

(intensity Iin) incident on a collection of atoms that possesses a two-photon

inversion. It will be ampliÞed by an amount that is approximately given by

Iout ∼ Iin exp
h
G(2)IinL

i
(1.3)

when the frequency of the incident beam is equal to one-half the two-photon

transition frequency, where L is the length of the medium and G(2) is the

two�photon gain coefficient. Equation 1.3 is valid when the transition is not

saturated and that the gain is very small1. Note that the input intensity ap-

1See Sec. 2.3 for a more complete explanation of the derivation of Eq. 1.3.



7

pears in the exponential, and hence the gain vanishes when the input intensity

is small. This is in contrast to a one-photon gain medium where the gain is

independent of the intensity (until saturation sets in).

The intensity dependent gain seen in two-photon gain media made two-

photon lasers initially appear to be an experimentalists dream � not only could

they produce two tunable frequencies, but they would operate at high power

and store large energies. This contrasted with the Þxed-frequency, modest

power lasers which existed in the early sixties, and provided great motivation

to study these novel devices.

1.2.2 Nonclassical photon statistics

Measuring and understanding the statistics of photons allows direct study of

the particle character of the electromagnetic Þeld, and hence offers a window

into the fundamentals of quantum mechanics. The potential of a two-photon

ampliÞer or a two-photon laser to display nonclassical behavior and statistics

has long been discussed. In 1967 Lambropoulos remarked, �At the present

time, there are two kinds of light sources, as far as photon statistics is con-

cerned: thermal sources and lasers. The results of this paper [titled Quantum

Statistics of a Two-Photon Quantum AmpliÞer] indicate that by passing laser

light through a two-photon ampliÞer, one will be able to create a light source

having a new kind of statistics even if the ampliÞer operates well below thresh-

old [4].� It was realized that the two-photon ampliÞer and laser represent

potential sources of nonclassical light which may display non-Poissonian pho-

ton number statistics and photon bunching or anti-bunching2. From that time

2See Sec. 6.1.4 for a further description of squeezing and nonclassical photon statistics.



8

on, there has been continuing theoretical interest in the intrinsic nonlinear and

nonclassical nature of the two-photon interaction. Although idealized theories

exist, the statistical and coherence properties of a real two-photon ampliÞer

and laser are still very much unknown and in need of careful study.

1.2.3 Squeezed light

The nonclassical nature of light generated from a two-photon interaction may

have potential applications in optical communications as well. A necessity

in any type of communication, optical or otherwise, is that information be

transferred with as little distortion or noise as possible. In the electronic regime

there is a fundamental lower limit to this noise, yet in the optical regime a few

tricks can be played to get around an apparently similar lower limit. It has

recently become possible to �squeeze� [5] noise from the amplitude of light

to its phase, or vice versa. Information can then be efficiently and effectively

transferred on the low-noise light quadrature with little distortion even over

very long distances.

The light output from ideal two-photon lasers has been predicted to auto-

matically emerge in one of these squeezed states. This is true of very few, if any,

other quantum devices. Harnessing the laser�s squeezed noise characteristics

could prove quite useful in optical technology and communications systems cur-

rently under development. However, predictions concerning the output noise

behavior of the two-photon laser are contradictory, some claiming squeezing

and others Þnding an absence of squeezing in any �real� (versus ideal) system.

Similarly, there are many contradictory predictions concerning the squeezed

state characteristics of light exiting a two-photon ampliÞer, yet again no care-
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ful tests have been performed. A deÞnitive measurement of the output light

characteristics of a two-photon device certainly seems a topic worth pursuing.

1.2.4 Novel threshold behavior

Intensity dependent gain, non-classical photon statistics, and squeezing are

behaviors predicted of devices based on a two-photon gain process that are not

seen in similar devices based on a one-photon gain process. Further interesting

characteristics are predicted of the two-photon laser in particular. Some of the

earliest musings about two-photon lasers, for example, recognized that they

would display novel threshold behavior. The threshold condition for all lasers

requires that the light circulating in the cavity be self-sustaining, and hence

the round-trip gain must equal the round-trip loss. For one-photon lasers

this criterion yields the well known result that lasing will commence when

a uniquely deÞned minimum inversion, proportional to the gain, is attained

via sufficient pumping. The situation is more complicated for the two-photon

laser because the gain increases with increasing inversion density ∆N and with

increasing cavity photon number q (until the atoms are saturated), so the

threshold condition must be speciÞed by two parameters. I deÞne a threshold

inversion density ∆Nth as the inversion density needed to satisfy the threshold

condition with a cavity photon number qsat just sufficient to saturate the two-

photon gain. When ∆N > ∆Nth, there is a corresponding cavity photon

number (which is less than, but comparable to, qsat) that must be present in

the cavity before the laser will turn on. Hence, if the laser is initially off it

cannot turn on unless some perturbation, such as an externally injected Þeld,

brings it above the necessary value [6, 7, 8, 9]. The two-parameter threshold
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condition and need for an external trigger are essentially new laser behaviors.

Tests conÞrming these behaviors are needed to verify theoretical approaches

researchers take toward two-photon lasers.

1.2.5 Bistable Output

The dual threshold condition resulting from the nonlinearities of the system

serves to give the laser an interesting, and potentially useful, bistable character.

A typical laser, once above threshold, turns on smoothly and reaches a single

stable output intensity. A two-photon laser, on the other hand, undergoes a

discontinuous transition at the lasing threshold between a low intensity state

and the high-output lasing state. Both the low and the high outputs are

accessible states of the system for the same given input parameters. The ability

to discontinuously jump between these two possible outputs is an example of

optical bistability, and allows us to consider the two-photon laser as an optical

switch. This behavior is illustrated in Fig. 1.3, and can be described as follows

[10]:

If the input intensity is held Þxed at the value Ibias (the bias in-

tensity), the two stable output points indicated by the Þlled dots

are possible. The state of the system can be used to store binary

information. The system can be forced to make a transition to the

upper state by injecting a pulse of light so that the total input in-

tensity exceeds Ihigh; the system can be forced to make a transition

to the lower state by momentarily blocking the input, taking the

intensity below Ilow.
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Figure 1.3: Schematic representation of the input-output characteristics of a
system that displays optical bistability.

Optical switches are a critical component in any type of all-optical de-

vice or optical computer because of their ability to perform logic and memory

functions. The potential of optical devices to work faster and at higher band-

width than many electronic devices has spurred research into their design and

construction, and new optically bistable devices like the two-photon laser are

constantly in demand.

1.3 Problems and Progress

The previous section presented a wide range of motivations, both fundamen-

tal and applied, for studying the two-photon ampliÞer and two-photon laser

and should make clear that a robust experimental realization of both devices

is quite desirable. Unfortunately, experimental tests of the numerous, often
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conßicting, predictions regarding two-photon ampliÞer and laser behavior have

been hindered by the limited success in the realization of such devices. The

smallness of the two-photon gain coefficient G(2) presents the main stumbling

block in both cases. No atomic or molecular gain medium has been found

that possesses a large enough two-photon gain coefficient on which to base an

effective two-photon ampliÞer, let alone a two-photon laser. Seemingly, a nat-

ural solution would involve using high intensities as can be seen from Eq. 1.3.

Unfortunately, several other competing nonlinear optical processes [11], such

as four-wave mixing [12], anti-Stokes Raman scattering [13], self-focusing [14],

and photo-ionization [15] occur simultaneously in the gain medium and become

more prevalent at higher intensities. In addition, normal one-photon lasing or

super-ßuorescence [16] from the upper state to some other lower-energy inter-

mediate state may deplete the inversion and hence reduce two-photon gain.

Typically, the competing processes dominate the two-photon stimulated emis-

sion process and prevent the occurrence of two-photon lasing.

Progress toward the realization of a two-photon laser was virtually at a

standstill due to the lack of a suitable two-photon gain medium until the recent

development of the dressed atom two-photon gain medium [17]. This compos-

ite gain medium, made up of laser-pumped two-level atoms, couples the atom

to the Þeld in such a way that the energy-level and resonances structure of

the atom is modiÞed due to the laser-Þeld induced Stark shifts. Dressed-state

atoms provide a near ideal two-photon gain medium which proved remark-

ably successful and culminated in the Þrst observation of continuous-wave two-

photon optical lasing [18].

The dressed-state two-photon laser remains the only two-photon laser ever
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successfully realized. Its usefulness is, however, limited by the relatively small

(∼0.1%) two-photon gain it displays. The difficulty in constructing and main-
taining a dressed-state two-photon laser based upon gain of only 0.1% is such

that it proves impractical to do extended studies on the laser�s properties and

behavior. This drawback motivated us to search for a new two-photon gain

medium. A medium displaying large two-photon ampliÞcation would allow de-

tailed studies into the two-photon ampliÞcation process and the photon statis-

tics of this unusual quantum ampliÞer. In addition, a laser based upon a

new two-photon gain medium offers the opportunity to distinguish between

properties inherent to a general two-photon laser and properties speciÞc to a

particular gain medium. Finally, a better two-photon ampliÞer will make it

easier to achieve two-photon lasing. This would allow us to thoroughly char-

acterize two-photon lasers, addressing some open questions about the laser�s

coherence properties, instabilities in output power, photon ßuctuation noise,

photon correlations, and threshold behavior, for example.

1.4 A new twist on Raman gain

I have discovered and characterized a new type of two-photon gain medium

that is capable of amplifying a beam of light by 30% using the two-photon

stimulated emission process, about 300 times larger than the best previously

reported dressed-atom two-photon gain. The gain mechanism is based on a

process I call two-photon stimulated Raman scattering, in which laser photons

scatter from a three-level atom as shown in Fig. 1.4b. In this experiment the

Raman transition occurred between the hyperÞne-split ground-state levels of

a laser-driven potassium vapor.
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Figure 1.4: Level structure for one- and two-photon Raman gain

In its most basic form, the geometry of Raman scattering is straightforward.

A strong driving Þeld (the �pump� beam) passes through a Raman active

medium and interacts with the medium in such a way that part of its energy

is transferred to waves at frequencies different from that of the source. The

component shifted to lower frequency wave is known as the Stokes wave and

will be produced when the Þnal atomic state has a higher energy than the

initial state. The higher frequency component, resulting from the Þnal atomic

state being less excited than the initial state, is known as the anti-Stokes wave.

The pump, Stokes, and anti-Stokes wave are all observed at the output of the

Raman medium. Most relevant for our purposes, under appropriate conditions

stimulated Raman scattering can occur [19], resulting in an exponential growth

of the Stokes wave.

In the atomic gain medium, application of a strong driving signal at ωd

generates new scattered frequencies at ωp = ωd ± ∆hfs, when ∆hfs is the

ground state hyperÞne splitting of potassium. Familiar one-photon Raman
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Stokes scattering (Fig. 1.4a) involves a single pump photon (at frequency ωd)

and a single scattered Raman photon (at frequency ωp) in making a transition

from the initial state | g > to the Þnal state | g0 > via a virtual state associated
with the excited state | e > . This occurs at a frequency ωp = ωd −∆hfs. The

intensity of the scattered light for the Raman Stokes process shown in Fig. 1.4a

is proportional to the pump intensity (until saturation occurs), the Raman cross

section (a medium dependent factor), and the population in the initial state.

Because the virtual level is close to the real excited state, the Raman cross

section will be greatly enhanced. This Raman process will amplify the Stokes

radiation if the populations of the levels are such that an atom is transferred

from a more to a less populated state. This ampliÞcation is, of course, at the

expense of the pumping laser � one laser photon is lost for each Stokes photon

that is created. Absorption is expected at frequency ωp = ωd+∆hfs due to the

corresponding anti-Stokes process involving a transition from | g0 > to | g > .
In our experiment the inversion is such that this process will, of itself, not be

ampliÞed.

So far I have only considered conversion to the Þrst Stokes wave. With

powerful laser beams, Raman scattering involving multiple pump and probe

photons can appear, producing light at the subharmonics of the Þrst Stokes

wave. Although these effects have been noticed in spectroscopy and wave-

mixing experiments for a number of years, their potential for multiphoton gain

has, to my knowledge, never before been carefully studied. I intend to use a

two-photon Raman process, shown in Fig. 1.4b, to provide the gain for a two-

photon ampliÞer and a two-photon laser. A two-photon Raman process involves

the absorption of two pump photons and emission of two Raman photons in
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Figure 1.5: The experimental geometry

making the transition between states | g > and | g0 >, and occurs at frequency
ωp = ωd − ∆hfs/2. The intermediate level | e > that is nearly equidistant

from each ground state serves to signiÞcantly enhance the transition. Even

so, the two-photon Raman transition is a second order effect, and thus the

two-photon cross section is much smaller than the one-photon cross section.

Two-photon gain thus tends to be relatively small, which might explain why

it has been ignored up until now. The two-photon gain coefficient is, however,

intensity dependent, differing from the usual Raman gain coefficient, and in

agreement with the earlier discussion. This can be intuitively understood since

the multiphoton nature of the transition requires the two pump and probe

photons to arrive at the atom simultaneously, occurring more often at higher

intensities.

1.5 Experimental Overview

The experiment presented in this thesis reports on the observation of 30%

continuous-wave two�photon optical ampliÞcation in a laser-driven potassium

vapor. The experimental geometry is shown in Fig. 1.5 and involves a strong
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pump laser and relatively weaker probe laser interacting in a potassium vapor

cell. The modiÞcations to the probe beam transmission spectrum due to the

presence of the pump beam are detected and analyzed. The pump laser used

in this pump-probe spectroscopy is tuned to the red of the 770-nm 4S1/2 (F =

1) → 4P1/2 (F = 1) transition in potassium and serves two purposes. First,

it creates an inversion between the ground-state hyperÞne levels (necessary for

gain) by optically pumping atoms from the F = 2 to F = 1 levels as they

move into the pump beam. Second, it acts as the pump Þeld for the two-

photon Raman process. Typical pump intensities are 1 kW/cm2. The probe

laser, used to stimulate Raman scattering, spatially overlaps the pump beam

inside much of the cell and crosses it at a about a 12 mrad angle. Typical

probe beam intensities range up to about 50 W/cm2.

Using this experimental conÞguration, I observe large ampliÞcation of the

probe laser due to one-photon Raman scattering when ωp ' ωd − ∆hfs and
probe laser power is low. For higher powers, the one-photon Raman gain

decreases dramatically and a new gain feature appears at ωp ' ωd −∆hfs/2.

I attribute this probe-dependent feature to the two-photon Raman scattering

process because it occurs at the expected frequency and it is not present for

low probe-beam intensities, as expected for the two-photon stimulated emission

process. Figure 1.6 illustrates the two-photon scattering process and relevant

energy levels in potassium. Figure 1.7 shows the experimentally measured

gain experienced by a strong probe beam as a function of the probe�pump

detuning frequency. As seen in Fig. 1.7, I observed single-pass two-photon

ampliÞcation of about 30%. This gain is sufficiently large as to allow detailed

studies concerning the properties of the two-photon ampliÞcation process and
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Figure 1.6: Two-photon Raman scattering in potassium as a mechanism for
two-photon gain.

make tractable the construction of a two-photon laser.

The two-photon Raman-scattering system provides two signiÞcant (and re-

lated) advantages over the dressed-state two�photon laser. First, it is relatively

insensitive to broadening mechanisms. This stems from two factors: the initial

and Þnal states of the Raman transition are long-lived ground states (though

they do have a Þnite effective lifetime due to optical pumping), freeing the sys-

tem from radiative broadening; in addition, the net Doppler effect for Raman

transitions with nearly copropagating beams is nearly zero. Insensitivity to

broadening mechanisms leads naturally to the second advantage � it results in

extremely good spectral resolution, so the gain feature remains resolved even

in a high number-density atomic vapor. Working at high number densities

serves as a major source of our gain enhancement over the dressed-atom case.

Using a vapor cell rather than an atomic beam as the source of atoms also

substantially simpliÞes the experimental apparatus.
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Figure 1.7: Gain experienced by a strong probe beam. The two-photon gain is
about 30%.

1.6 Thesis Organization

The body of this thesis is divided into six chapters. Chapter 2 develops a

semiclassical theory of two-photon transitions in a three-level atom. The results

are used to give a basic understanding of a few of the considerations that must

go into the design of a two-photon laser, and help to convey why building such

a laser is a difficult task.

Chapter 3 describes the experimental apparatus used to perform pump-

probe spectroscopy. A fairly comprehensive overview is presented of the diode

laser system. Sections also detail the pump laser, the potassium cell, the optical

layout, and the data collection and analysis implementation.

Chapter 4 reports on the experimental results in the development of a new
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two-photon gain medium. It describes pump-probe spectroscopy in a potas-

sium vapor cell, carefully explaining experimental techniques and the resulting

probe-beam output spectrum. In particular, it notes the appearance of light

due to two-photon Raman scattering.

Chapter 5 presents the theory used to describe the interactions of the pump

and probe Þelds with the potassium vapor. I use a density-matrix approach

to the problem in which potassium is treated as a three-level atom and both

the pump and the probe Þelds are allowed to interact with all relevant tran-

sitions. I also Doppler average over the atomic velocities in order to more

accurately represent the physical system. Using reasonable estimates of sys-

tem and experimental parameters, the theory reproduces all major features in

the experimental spectra. Our group intends to use the theory in future work

to help predict and optimize system parameters in potassium, as well as to test

other alkali atoms for their two-photon gain characteristics.

Chapter 6 carefully reviews the past and current literature on two�photon

lasers. It begins with some early theory on two-photon lasers and ampliÞers,

and progresses through semiclassical and quantum theories of the two-photon

laser. The quantum theory naturally leads to interesting predictions concern-

ing the nonclassical nature of the light output from the laser. The stability

properties of the two-photon laser are also explored. The chapter ends with a

quick synopsis of the important experimental progress towards the realization

of a two-photon laser.

Chapter 7 presents a simple rate-equation model for two-photon lasers that,

despite its simplicity, captures the essential physics of their behavior and affords

an intuitive understanding of their novel threshold and stability behavior. I
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use the model to investigate the steady-state behavior of the laser, explore the

stability of the steady-state solutions, and predict the injected pulse strength

necessary to initiate lasing.



Chapter 2

Fundamental aspects of two-photon
interactions

I begin the discussion of the fundamental aspects of two-photon interactions

by investigating the microscopic interaction of a Þeld with a three-level atomic

system using a semi-classical density matrix formalism. Although this chap-

ter provides a simplistic picture of these interactions (much simpler than the

experiment), it captures many of the essential features expected from a two-

photon ampliÞer or laser, and in doing so elucidates how the scaling of cer-

tain experimental parameters affect the two-photon gain. I Þrst derive the

two-photon Bloch equations for degenerate two-photon transitions in a three-

level atom that describe the time-evolution of the population inversion and

two-photon coherence in the atomic system. Using this result, I derive an ex-

pression for the intensity of a Þeld as it propagates through a two-photon gain

medium, and show that the gain scales with the incident intensity as described

by Eq. 1.3. Based on these Þndings, I discuss the relationships between the

two-photon gain, competing one-photon gain, and considerations in building a

two-photon oscillator. It is shown that balancing two-photon gain against com-

22
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peting nonlinear effects is a difficult task and a major factor in efforts toward

the experimental realization of a two-photon laser.

2.1 The atom-Þeld interaction

2.1.1 Density matrix formalism

For completeness, I brießy describe the origin of the density matrix equations;

the interested reader should consult one of the many excellent texts on quantum

mechanics [20] for a detailed discussion.

For a system in a pure state with wavefunction Ψ(t), the wavefunction can

be expanded in a linear superposition of the energy eigenstates {|ni}, where
these eigenstates are solutions to the time-independent Schrödinger equation

�H0 |ni = En |ni and �H0 is the Hamiltonian of the unperturbed atom. The

time evolution of the system is then given by the time-dependent Schrödinger

equation

i~
∂

∂t
|Ψ(t)i = �H(t) |Ψ(t)i , (2.1)

where �H(t) is the full Hamiltonian of the system. Since the interaction between

an atom and a Þeld is typically weak, the Hamiltonian can be broken down into

the sum of the Hamiltonian of the unperturbed atom �H0 and a perturbation

term �V representing the interaction of the optical Þeld with the atom. In the

electric dipole approximation, the interaction operator is given by

�V = −�µ · E(r, t) , (2.2)

where �µ represents the dipole matrix operator and E(r, t) denotes the electric

Þeld.
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The density operator �ρ(t) is deÞned as the projection operator of the state

vector

�ρ(t) = |Ψ(t)i hΨ(t)| . (2.3)

This operator can be expressed in matrix form

�ρ =

 ρaa ρab ρac
ρba ρbb ρbc
ρca ρcb ρcc

 , (2.4)

where the density matrix elements are given by

ρmn = hm | �ρ | ni = hm | ΨihΨ | ni . (2.5)

The time evolution of the density matrix elements is then described by

i~
∂ρmn
∂t

=
h
�H, �ρ

i
mn

, (2.6)

where Eq. 2.6 is exactly equivalent to the Schrödinger equation given by Eq.

2.1.

For the driven three-level atomic system, I assume that an incoherent pump

source modiÞes the atomic populations and creates a population inversion. The

diagonal density matrix elements ρmm are probabilities of the atom being in

state m and hence describe the time dependence of the �population� for level

m. Because populations are real, ρmm = ρ
∗
mm. Decay of population from the

excited state to the ground state is accounted for phenomenologically and is

taken to be the sum of the spontaneous emission and collisional transfer rate

constants from level l to m, γlm. The off-diagonal elements are proportional

to the atomic dipole moment, and explicitly represent coherences between the

atomic levels. Off-diagonal elements satisfy the relationship ρlm = ρ∗ml and

relax at a rate Γlm.
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The explicit form of the density matrix equations of motion for an atom

driven by one or more Þelds and damped by broadening and decay mechanisms

can be found from Eqs. 2.2 and 2.6 and are given by [21]

∂ρll
∂t

= − X
i

Ei<El

γliρll +
X
i

Ei>El

γilρii +
i

~
X
i

(µliρil −µilρli) · E(r, t) (2.7)

and

∂ρlm
∂t

= − (iωlm + Γlm) ρlm + i

~
X
i

(µliρim −µimρli) · E(r, t) , (2.8)

where ωlm = El−Em/~. The dipole matrix elements are denoted by µli, where
electric dipole transitions only occur between states of different parity. Thus

µca = µac = 0.

2.1.2 Dynamics of the three-level system

I consider the interaction of a laser Þeld E(r, t) = E(r, t)e−iωt + c.c. and the
three-level system shown schematically in Fig. 2.1. The states | ei and | gi
have the same parity (thus µeg = 0) and state | ii has the opposite parity. A
pump mechanism transfers population from | gi to | ei at a rate R to create
a population inversion between the two states (ρee > ρgg). Population in | ei
decays via one-photon spontaneous emission to state | ii at rate γei, which
subsequently decays to | gi at rate γig. For simplicity, I assume that γig À γei

so that essentially no population builds up in the intermediate level.

The Þeld induces two-photon transitions | ei →| gi that proceed through
a virtual intermediate level depicted as a dashed line in Fig. 2.1. The real

intermediate level | ii is located near the virtual level (detuning ∆ig = ω−ωig)
to resonantly enhance the two-photon transition rate, as shown below.
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pump
mechanism         

|g>

|e>

|i> ω

ω

∆ ig

γei

igγ

R

Figure 2.1: Two-photon gain in a three-level atomic system. The intermediate
state | ii enhances the two-photon transition rate.

The density matrix equations for the simpliÞed model of the three-level

atom with degenerate two-photon transitions are given by

dρig
dt

= −(iωig + Γig)ρig + i

~
(µigρgg + µieρeg −µigρii) · E(r, t), (2.9)

dρei
dt

= −(iωei + Γei)ρei + i

~
(µgiρeg − µeiρee + µeiρii) ·E(r, t) , (2.10)

dρeg
dt

= −(iωeg + Γeg)ρeg + i

~
(µeiρig −µigρei) · E(r, t) , (2.11)

dρgg
dt

= γigρii −Rρgg + i

~
(µgiρig − µigρgi) ·E(r, t) , (2.12)

dρee
dt

= γeiρee +Rρgg +
i

~
(µeiρie − µieρei) · E(r, t) , (2.13)

dρii
dt

= γeiρee − γigρii +
i

~
(µigρgi + µieρei − µgiρig − µeiρie) · E(r, t) , (2.14)

Since the coherences ρij contain both a fast time scale (set by the optical

frequency ω) and a slow time scale (set by the interaction energy), I introduce
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slowly varying coherences σij through the relations

ρei = σeie
−iωt , (2.15)

ρig = σige
−iωt , (2.16)

ρeg = σege
−i2ωt , (2.17)

and

ρkk = σkk . (2.18)

In order to eliminate fast time variations in the density matrix equations I

keep only resonant terms, effectively factoring out terms which oscillate at

optical frequencies and thus have negligible average response. This is called the

rotating wave approximation, and serves to signiÞcantly simplify the problem.

As a Þnal notational simpliÞcation, I write the Rabi frequencies for the dipole-

allowed transitions as

Ωig =
2µig · E(r, t)

~
, (2.19)

and

Ωei =
2µig · E(t)

~
. (2.20)

The Rabi frequencies provide a natural measure of the strength of the applied

signal Þeld and the effectiveness of the laser in stimulating transitions in the

atom.

Inserting Eqs. 2.15 � 2.20 into Eqs. 2.9 � 2.14 and making the rotating

wave approximation, I Þnd that

dσig
dt

= i(∆1 + iΓig)σig +
i

2
(Ωigσgg + Ω

∗
eiσeg), (2.21)

dσei
dt

= −i(∆1 − iΓei)σei − i

2
(Ω∗igσeg + Ωeiσee) , (2.22)
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dσeg
dt

= i(∆2 + iΓeg)σeg +
i

2
(Ωeiσig −Ωigσei) , (2.23)

dσgg
dt

= γeiσee −Rσgg + i

2
(Ω∗igσig − Ωigσgi) , (2.24)

and

dσee
dt

= −γeiσee +Rσgg + i

2
(Ωeiσie − Ω∗eiσei) . (2.25)

2.2 The two-photon Bloch equations

This set of equations can be further simpliÞed through adiabatic elimination of

the one-photon coherences (performed formally by setting dρig/dt = dρei/dt =

0) which is valid so long as ∆1 À Γei, Γig [21]. Under these circumstances the

dipole moment of the atoms follows the applied Þeld. Adiabatic elimination

immediately allows us solve for the one-photon coherences, giving

σig = − 1

2∆1
(Ωigσgg + Ω

∗
eiσeg) (2.26)

and

σei = − 1

2∆1
(Ωeiσee + Ω

∗
igσeg) . (2.27)

Inserting Eqs. 2.26 and 2.27 into Eqs. 2.23 � 2.25 and introducing the two-

photon population inversion w = σee − σgg (where the total population in the
levels is normalized to unity, σee+σgg = 1), I Þnd that the equations-of-motion

for the population inversion and the slowly varying two-photon coherence are

given by

dw

dt
= −(γeg +R)(w − weq)− i[Ω∗σeg −Ωσge], (2.28)

and

dσeg
dt

= i[∆2 − δs + iΓeg]σeg + i

2
Ωw . (2.29)
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Equations 2.28 and 2.29 are known as the two-photon Bloch equations, where

Ω =
ΩigΩei
2∆1

(2.30)

is the two-photon Rabi frequency,

δs =
|Ωei|2 − |Ωig|2

4∆1
(2.31)

is the frequency shift due to the AC Stark effect, and

weq =
R− γeg
R+ γeg

(2.32)

is the population inversion in the absence of an applied Þeld.

Two important parameters describing a two-photon system have become

self-evident in the two-photon Bloch equations. The Þrst is the two-photon

Rabi frequency, which gives an indication of the strength of the two-photon

interaction in the same way that the more familiar one-photon Rabi frequency

gives information about the strength of one-photon interactions. The AC-

Stark shift of the two-photon transition is a shift in the atomic energy levels

resulting from interaction with oscillating electric Þelds1. A simpliÞed diagram

illustrating the effect of the two-photon Rabi frequency and the AC Stark shift

on the atomic energy levels is shown in Fig. 2.2. The initial and Þnal states

of the two-photon transition are shifted apart by the AC Stark shift, while the

levels are split by the two-photon Rabi frequency.

1Interaction of atoms with a static electric Þeld has long been known to produce shifts of
atomic energy levels, traditionally termed DC Stark shifts. In both the AC and DC Stark
effect, an applied electric Þeld induces a large dipole moment in an atom. This dipole
moment then interacts with the Þeld via the electric dipole interaction to produces the
shift in atomic energy levels.
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|g>

|i>

Ω
|e>

δ  /2s

Figure 2.2: Effect of the two-photon Rabi frequency and the AC Stark shift on
the atomic energy levels.

2.3 Intensity dependent gain

The two-photon Bloch equations allow us to explore how an applied optical

Þeld evolves as it propagates through a two-photon gain medium. Since the

intensity dependence of a two-photon gain process provides the basis for many

of the novel characteristics expected of two-photon lasers and ampliÞers, it

is worthwhile to derive a Þrst-order approximation to the two-photon gain

coefficient. In addition, the form of the result, which reproduces Eq. 1.3,

proves particularly intuitive.

The evolution of an optical Þeld within the ampliÞer is described by Maxwell�s

Equations. For a non-conducting, non-magnetic gain medium without any free

charges or currents, Maxwell�s Equations can be manipulated to arrive at the



31

optical wave equation [22, 23]

∇2E(r, t)− 1

c2
∂2E(r, t)

∂t2
=
4π

c

∂2P(r, t)

∂t2
, (2.33)

where P(r, t) is the polarization (i.e., the dipole moment per unit volume) of

the medium. The polarization is given in terms of the density matrix through

the relation P(r, t) = Nh�µi = NTr(�ρ�µ) where N is the number density of

atoms. For a monochromatic plane-wave electric Þeld propagating in the +z-

direction,

E(r, t) = �²A(z) exp(ikz) (2.34)

where �² is the polarization unit vector. Similarly, the polarization can be

expressed as

P(r, t) = P(z) exp[−i(ωt− kz)] + c.c. . (2.35)

Inserting Eqs. 2.34 and 2.35 into the wave equation and making the slowly

varying amplitude approximation (∂2A/∂z2 ¿ k∂A/∂z), the spatial evolution

of the Þeld is given by

∂A(z)

∂z
= i2πk�²·P(z) . (2.36)

The intensity of the Þeld is given by

I(z) =
c

2π
|E(r, t)|2 , (2.37)

and hence

∂I(z)

∂z
=
c

2π

Ã
A(z)

∂A∗(z)
∂z

+ c.c.

!
= −2ω Im [A∗(z)�²·P(z)] . (2.38)

Because Eq. 2.38 involves only the imaginary part of the quantityA∗(z)�²·P(z),
I explicitly evaluate Im [A∗(z)�²·P(z)] and ignore any pure-real terms in the
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bracket. For the three-level system,

P(z) = N(µieσei + µgiσig)

= − N

2∆1

h
µie(Ωeiσee + Ω

∗
igσeg) + µgi(Ωigσgg + Ω

∗
eiσeg)

i
, (2.39)

where in the second equation I have used Eqs. 2.26 and 2.27 for the coherences

σei and σig. Expressions for σee, σgg, and σeg are found by solving the two-

photon Bloch equations in steady-state,

w = σee − σgg = weq
"
1 +

|Ω|2 Γeg
(γeg +R)[(∆2 − δs)2 + Γ2eg]

#−1
(2.40)

and

σeg =
−Ωweq

2(∆2 − δs + iΓeg)
"
1 +

|Ω|2 Γeg
(γeg +R)[(∆2 − δs)2 + Γ2eg]

#−1
. (2.41)

I Þnd

Im [A∗(z)�²·P(z)] = −
N |A(z)|4

¯̄̄
�² · µig

¯̄̄2 |�² · µei|2wegΓeg
∆21~3[(∆2 − δs)2 + Γ2eg]

×
1 + 4 |A(z)|4

¯̄̄
�² · µig

¯̄̄2 |�² · µei|2 Γeg
∆21~4(γeg +R)[(∆2 − δs)2 + Γ2eg]


−1

. (2.42)

Although the above expression can be used to evaluate the Þeld intensity as a

function of z, in general its complicated intensity dependence (both |A(z)|2 and
the Stark shift δs are intensity dependent) make this a nontrivial computation.

If, however, I consider the case when the Stark shift δs is zero (i.e.,
¯̄̄
�² · µig

¯̄̄2
=¯̄̄

�² · µig
¯̄̄2
), I can derive a relatively simple expression for ∂I(z)/∂z. Introducing

the two-photon saturation intensity Isat deÞned by

1

I2sat
=
4π2

c2

4
¯̄̄
�² · µig

¯̄̄2 |�² · µei|2 Γeg
∆2
1~4(γeg +R)[∆22 + Γ2eg]

(2.43)
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I Þnd that

Im [A∗(z)�²·P(z)] = −~N(R− γeg)
4

I2

I2sat + I2
. (2.44)

Thus

∂I(z)

∂z
=
~ωN(R− γeg)

2

"
(I / Isat)

2

1 + (I / Isat)2

#
≡ G(2)

"
I2

1 + (Iin / Isat)2

#
, (2.45)

where G(2) is the two-photon gain coefficient.

Rather than attempting to directly solve this differential equation for the

intensity, I consider propagation of the Þeld through a thin slice of the gain

medium in which the change in the intensity can be described reasonably by

∂I(z)

∂z
=
I(z + L)− I(z)

L
. (2.46)

For a thin medium where the intensity is approximately constant throughout,

I Þnd

Iout = Iin +
I2in

1 + (Iin / Isat)2
G(2)L , (2.47)

where Iin = I(z) and Iout = I(z +L). For low intensities (Iin / Isat ¿ 1) and a

thin medium (IinG
(2)L¿ 1),

Iout ' Iin +G
(2)LI2in + higher order terms

' Iin exp[IinG
(2)L] . (2.48)

Equation 2.48 reproduces Eq. 1.3.

I write the intensity in this form in order to emphasize the similarity of

the beam intensity behavior to that for ordinary linear gain media in which

Iout = Iin exp[G
(1)L]. The expressions are identical with the exception that

the two-photon gain in the exponential has a linear intensity dependence. Yet

this intensity dependence leads to entirely new behaviors � not only does the
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gain increase with intensity, but because the input intensity appears in the

exponential, the gain vanishes when the input intensity is small.

2.4 Considerations in two-photon laser

construction

The two-photon Bloch equations derived earlier contain information that helps

to explain why building a two-photon laser is difficult. In order to explore this

problem it becomes useful to draw upon results from my rate-equation model

of two-photon lasers that will not be discussed in detail until Chapter 7. The

rate-equations are written in terms of the two-photon rate coefficient B(2), and

the model then derives results for the two-photon saturation number qsat and

saturation intensity Isat in a two-photon laser cavity, as well as the required

threshold inversion density ∆N th
o to initiate two-photon lasing. Referencing

ahead to Sections 7.2 and 7.3, I have

qsat =
q
γ/2B(2) , (2.49)

Isat = c~ωqsat /Vc , (2.50)

and

∆N th
o = nweq = 4qsat γc/γVa , (2.51)

where γ (γc) is the population (cavity) decay rate, Vc is the volume of the

cavity, and n is the number density of the gain medium.

The two-photon Bloch equations obtained from the density matrix formal-

ism are connected to the rate equations under conditions when there is large
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dephasing of the two-photon coherence (Γeg À ∆2,∆s, γ, γc). In this case,

the two-photon coherence can be adiabatically eliminated from Eq. 2.28 using

Eq. 2.29 with ∂σeg/∂t = 0. It is then found through comparison with the rate

equations (Eq. 7.17) that the two-photon rate coefficient is given by

B(2) =
32π2 |µei · �²|2

¯̄̄
µig · �²

¯̄̄2
ω2

V 2c ~2∆2igΓeg
, (2.52)

where �² is the polarization unit-vector of the Þeld. Note that the rate coefficient

can be enhanced signiÞcantly when the real intermediate level | ii is close to
the virtual level of the two-photon process, that is, when ∆ig is small. It was an

understanding of this scaling that led to the development of the Þrst microwave

two-photon oscillator [24, 25], and the Þrst two-photon optical laser [18].

In what follows, I point out some of the considerations that go into build-

ing a two-photon laser that immediately follow from the two-photon Bloch

equations, the intensity-dependent gain seen in two-photon ampliÞers, or the

rate-equation model of two-photon lasers.

2.4.1 Stark-shifted levels

The AC Stark shift which appears in the two-photon Bloch equations can play

an important role in the dynamics of two-photon ampliÞers and lasers. As

a simple example, note that the two-photon transition frequency is intensity

dependent due to the intensity dependence of the Stark shift. Now assume,

for example, that a laser cavity is exactly tuned to the two-photon transition

frequency. A Þeld initially resonant with both the cavity and the atoms will ex-

perience gain, and the Þeld intensity will increase as described by Eq. 2.45. Yet

the increasing Þeld intensity serves to Stark shift the levels progressively farther
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dipole moment, |µei · �²| eao = 2.4× 10−18cm5/2g1/2s−1
population decay rate, γ 108s−1

coherence dephasing rate, Γeg 1× 109s−1
intermediate level detuning, ∆ig 1× 1013s−1

laser frequency, ω 3× 1015s−1
cavity length, L 5 cm
cavity volume, Vc 6× 10−4 cm3
cavity decay rate, γc 6× 107s−1

(corresponds to 1% loss)

Table 2.1: Parameters used to calculate the two-photon rate coefficient.

apart, detuning the cavity from resonance by a greater and greater amount.

This level shifting will eventually lead to two-photon loss rather than gain,

and hence the intensity dependence of the two-photon transition frequency

complicates the design of potential two-photon laser cavities.

2.4.2 Saturation intensity

An important conclusion drawn from the rate-equation model of a two-photon

laser is that the intensity circulating in a two-photon laser resonator is always

greater than or equal to the two�photon saturation intensity. Because of this,

the gain medium must have a low two-photon saturation intensity both to avoid

the high intensities that tend to magnify competing nonlinear optical processes

and to keep the cavity intensities within physically realizable bounds.

Let�s now see what the equations describing the two-photon rate coefficient

and saturation intensity can tell us. Using values that are typical for a three-

level two-photon optical gain medium and a resonator with a loss-per-pass of

1% (see Table 2.1), Eqs. 2.50, 2.51, and 2.52 give B(2) = 2.6 × 10−12s−1,
Isat = 6.6 × 104W-cm−2, and ∆N th

o = 1.8 × 1013 atoms-cm−3. The intensity

circulating in the resonator is modest in comparison to some present-day lasers,



37

giving hope that competing nonlinear optical effects, such as self-focusing and

photoionization, can be avoided. In addition, the threshold inversion density

is quite low (and easily realizable in an atomic vapor, for example).

It also proves enlightening at this point to calculate the saturation intensity

for other gain media with detunings quite different from that given in Table

2.1. Early explorations into two-photon gain media often looked at metastable

atomic levels for which no intermediate state existed. In such a two-level

model, the detuning parameter is equal to the laser frequency and is orders of

magnitude larger than when an intermediate state does exist. With all other

parameters remaining the same, this situation would increase the saturation

intensity to 2.2 × 107 W-cm−2. An intracavity intensity of 20 MW-cm−2 ap-

proaches the limits of easily available present-day continuous-wave lasers, and

probably presented a formidable barrier to experimentalists of the 1960�s. In

the other extreme, the Raman system discussed in this thesis can easily have

intermediate state detunings smaller than 2 GHz, corresponding to saturation

intensities only on the order of 20 W-cm−2. This would seem to be an ideal

situation � the intensity is low and easily realizable, while the two-photon rate

coefficient and corresponding gain, which scale inversely with detuning, have

increased by orders of magnitude. Based on these numbers, we have not yet

come upon any fundamental limitations hindering two-photon laser construc-

tion, and it would seem straightforward to achieve two-photon lasing.

2.4.3 Competing effects

Unfortunately, nothing turns out to be quite this simple! Although the sat-

uration intensities may be reasonable to achieve, we have not yet carefully
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considered the potential for competing processes to interfere with two-photon

lasing and complicate two-photon laser design. For example, we must con-

sider the possibility that normal one-photon lasing on the | ei→| ii transition
can occur at a frequency spectrally distinct from the desired two-photon las-

ing frequency. This would prevent any two-photon lasing from occurring. For

sufficiently low one-photon gains, one-photon lasing can be avoided using a

high-Þnesse cavity that selectively enhances the two-photon laser frequency

and not the one-photon laser frequency. Yet in systems with high one-photon

gain (a fairly typical situation in systems that also have relatively large two�

photon gain), cavity selectivity proves less effective because ampliÞed sponta-

neous emission or superßuorescence may occur and destructively interfere with

potential two-photon lasing.

In ampliÞed spontaneous emission, spontaneous emission from a single atom

is ampliÞed as it propagates through an inverted medium. Superßuorescence

involves cooperative spontaneous emission among many atoms. In both effects,

quantum ßuctuations at the normal one-photon lasing frequency lead to ampli-

Þcation at this frequency, and an incoherent excitation of atoms may produce a

macroscopic output signal. When this occurs, spontaneous emission may, after

ampliÞcation, become large enough to deplete the laser inversion before the

desired two-photon optical signal can be efficiently propagated. The strength

of each of these emission processes is determined by the gain of the system.

As found by Malcuit [26], when the gain increases above unity the radiative

decay of the collection of atoms is initially characteristic of ampliÞed sponta-

neous emission. As the gain continues to increase the emission characteristics

will become more like superßuorescence. The threshold for superßuorescence
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occurs when the single-pass one-photon gain G(1)L is on the order of 10-30 [27].

I Þnd the single-pass one-photon gain on the |ei → |ii transition in the
three-level atomic medium using the density matrix equations to be

G(1)L =
4π∆N th

o |µei · �²|2 ωL
~cΓeg

, (2.53)

and estimate the size of this gain using parameters typical for a two-photon

optical gain medium (see Table 2.1). I Þnd that G(1)L ∼ 640, well into the su-
perßuorescence regime. This one-photon gain can be reduced in order to avoid

superßuorescence only by reducing the number density (which also unfortu-

nately reduces the two-photon gain!) or shortening the cavity length (which

may be physically impossible depending upon the experimental situation). The

number density must be reduced by a factor of about 20 to just avoid superßu-

orescence and by a factor of 100 to avoid signiÞcant depletion of the inversion.

Yet for a 100-fold decrease in the number density, the loss-per-pass in the

resonator must be less than about 10−4 to achieve two-photon lasing. Such

low-loss resonators can be constructed using recently developed super-polished

mirrors, but 15 years ago this would have presented an impossible requirement.

Note that in this low-loss situation the gain medium must be in contact with

the mirrors that form the resonator because any other optics in the cavity will

give too high of a loss.

2.4.4 Intermediate state detuning

As mentioned earlier, the two-photon rate coefficient scales inversely with the

detuning from the intermediate state. But now it should be clear that working

with small detunings is useful for a number of related reasons. Smaller detun-

ings reduce the saturation intensity in the system, and lower saturation inten-
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sities make it easier to avoid competing nonlinear optical effect which become

more prevalent at high intensities. In addition, the single-pass one-photon gain

does not scale with detuning. Thus, as the two-photon rate coefficient increases

with decreasing detuning, there is virtually no change in the one-photon gain.

The relative size of the two-photon gain with respect to the competing one-

photon gain increases favorably. Small detunings proved key in the realization

of the two-photon maser and two-photon dressed-state laser.

2.4.5 Frequency selection

In discussing potential methods for preventing one-photon lasing and superßu-

orescence from destructively interfering with two-photon lasing, the size of the

two-photon gain sets constraints on the methods we can use. If the two-photon

gain is large, simple elements with a frequency selective loss (like an etalon or

birefringent Þlter) placed inside the cavity can be used to prevent lasing at

competing frequencies. However, the gain is generally not high enough for this

to be reasonable. Consider, for example, the dressed-state two-photon laser

which displayed a two-photon gain of only 0.1%. Cavity losses greater than

this 0.1% gain would prevent the system from making it above threshold and

lasing on the two-photon transition. Yet an intracavity element such as a bire-

fringent Þlter generally has a loss of at least 0.5% at the transmission peak,

which is unacceptably high.

A different method of frequency selection involves using short (a few cen-

timeters) optical cavities. In systems with relatively small intermediate state

detunings, it becomes possible to force the free-spectral range2 of the two-

2The free-spectral range is deÞned as the frequency spacing between adjacent cavity modes,
and is found in terms of the cavity length L as ∆FSR = c/2L.
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photon laser cavity to be larger than the frequency splitting between the two-

photon and one-photon gain features. If a cavity mode is then carefully aligned

with the gain curve for the two-photon lasing frequency, it becomes impossible

for one-photon lasing frequency to simultaneously match up with a laser cav-

ity mode. In the case of the Raman system, in order to differentiate between

the one- and two-photon gain features requires a free-spectral range of about

2 GHz, which corresponds to a cavity length of only 7.5 cm. Note, however,

that because total two-photon gain increases with cavity length, working with

small cavities sacriÞces some precious two-photon gain.

In addition, we need to consider the gain bandwidth of the two-photon

gain peak. As we have seen, the two-photon gain scales as one over the square

of the detuning ∆ig. As a result, two-photon gain media displaying high gain

have a reasonably narrow gain bandwidths; in the Raman system for example,

the gain bandwidth is only on the order of 10-20 MHz. But now imagine

the practical difficulties of matching this gain curve to a cavity mode. In

typical laser systems, the gain medium has a very broad gain bandwidth such

that a number of cavity modes lie under the gain curve (see Fig. 2.3a). The

combination of the lasing transition lineshape with the resonant cavity modes

gives the resulting output of the laser, and since all of the cavity modes under

the gain curve can potentially lase, initiating lasing is straightforward. In the

case of a two-photon laser, however, the initial alignment must be extremely

precise. If the narrow gain bandwidth curve doesn�t overlap with a similarly

narrow cavity mode (see Fig. 2.3b), there will be no lasing!

It should have become obvious by now that many of the design constraints

on a two-photon laser involve balancing the available two-photon gain with the
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Figure 2.3: Comparison of the gain bandwidth for a one-photon and
two-photon laser system. In (b), lasing will not occur unless the gain curve of
the laser overlaps with a cavity mode.

occurrence and prevention of destructive competing effects. Few, if any, of the

problems mentioned here would be impossible to overcome using the beneÞts

of modern technology. They did, however, prove virtually insurmountable to

researchers of ten and twenty years ago. Even now, it remains extremely diffi-

cult to overcome all of the problems and still be left with a robust experimental

realization of a two-photon laser. The high two-photon gain and small detun-

ing found in the Raman gain medium described in this thesis, however, gives us

a signiÞcant edge. Though exact design considerations need to be explored, we

will be able to construct a two-photon laser based upon two-photon stimulated
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Raman scattering.

This chapter was intended to serve as a primer for a discussion on two-

photon lasers and ampliÞers. By looking at only a few simple quantities, we

were able to come to some understanding of the considerations that must go

into the design of a two-photon laser, and hence arrive at an understanding

of why building such a laser has proven to be a difficult task. However, the

discussion should have also given at least an intuitive understanding of why a

Raman gain medium that displays very high, spectrally resolved two-photon

gain should be useful in overcoming some of the experimental difficulties men-

tioned earlier. The next few chapters discuss experimental and theoretical work

in the realization of a high-gain two-photon ampliÞer.



Chapter 3

Experimental Apparatus

The goal of the experiment described in this thesis is to perform pump-probe

spectroscopy in a potassium vapor cell as a means of producing and measuring

high two-photon gain. In the past, the largest hindrance to the realization of a

two-photon laser has been the lack of a suitable two-photon gain medium. This

experiment uses Raman scattering to overcome earlier difficulties and achieve

high gain. Future work will utilize this gain and expand upon the existing

experimental apparatus in order to construct a two-photon laser.

This chapter discusses the experimental components and setup for pump-

probe spectroscopy. The necessary apparatus includes a �pump� laser and

�probe� laser, the potassium vapor cell, and all of the necessary equipment

for data collection and analysis. A proportionately large amount of time is

spent discussing the diode laser (the probe laser), because unlike the com-

mercial lasers this system was developed and built by us, and hence has no

accompanying instruction manual. It is also the Þrst stabilized, tunable diode

laser in the physics department, and because we expect such lasers to become

standard laboratory equipment in the next few years a careful description of

44
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them seems in order.

3.1 The Pump Lasers

This experiment requires a high-powered, tunable source of electromagnetic

radiation to act as a pumping Þeld for exploring light-matter interactions. I

use a titanium-doped-sapphire laser pumped by an argon-ion laser for this

purpose.

3.1.1 The Ti:Sapphire Laser

A Coherent Model 899-21 solid state Ti:Sapphire ring laser acts as the pump

laser for the system. With the short-wave optics in the cavity, it is tunable

from 700 to 825 nm. Both passive and active frequency control are used to

obtain stable single-mode operation.

A series of intracavity elements with wavelength dependent losses force the

laser into a single longitudinal mode. These include the birefringent Þlter (400

GHz free spectral range), the thick etalon (10 GHz free spectral range), and the

thin etalon (225 GHz free spectral range). The birefringent Þlter is mounted

at Brewsters angle inside the cavity and can be rotated about the beam axis.

Light passing through the Þlter gets a frequency dependent polarization rota-

tion, which, due to other cavity elements, translates into a frequency dependent

loss. The etalons work in the standard manner, transmitting only those wave-

lengths with the proper relationship to the etalon spacing. Laser cavity modes

are approximately determined by the requirement that an integral number of

optical wavelengths spans the cavity, and are predicted to be spaced by about

150 MHz. Only the cavity mode with the most gain can lase at any one time,
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and that mode will be the one that corresponds most nearly to the maximum

transmission of all three of the wavelength dependent loss elements mentioned

above.

Active frequency control is maintained by an electronic servo-loop which

uses an error signal generated from the reference cavity when the laser fre-

quency drifts. High-speed cavity length variations are corrected using a piezo-

electrically driven mirror, while a rotating Brewsters plate compensates for

lower speed length variations. Single-mode frequency scanning of up to 30

GHz is achieved by continuously varying the effective cavity length with the

galvanometer driven Brewster plate.

Typically, the output of the Ti:Sapphire laser is about 800 mW at 770

nm with about 6 W of pumping power. Maintaining reasonably high powers

on a day-to-day basis requires little maintenance beyond tweaking the control

knobs to optimize the laser output. Over time, however, this daily tweaking

can walk the cavity to a less efficient lasing mode, requiring removal of the

etalon assembly and realignment of the empty cavity.

3.1.2 The Argon Ion Laser

A Coherent Innova model 310 argon-ion laser pumps the Ti:Sapphire laser. The

active medium consists of an ionized gas plasma contained in a low-pressure

tube, which is positioned inside an optical cavity consisting of two dielectrically

coated laser mirrors. A DC current passing through the plasma tube creates

a population inversion, thus providing the energy which is converted to laser

light through the process of stimulated emission.

An intracavity beam shaping aperture adjusts the laser to run in approx-
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imately a TEM00 Gaussian mode. System settings and control are accessed

through a remote menu-controlled module. The laser uses a servo-controlled

actively stabilized optical cavity which maintains a reasonably constant output

power over the course of a day. It supplies about 6 W of laser power when 45

A and 200 V are applied across the plasma tube.

3.2 The Diode Laser

Diode lasers are fast becoming an invaluable tool for use in atomic physics and

laser spectroscopy [28]. One reason for their popularity rests on their tuning

ßexibility � their emitted wavelength is sensitive to input current, temperature,

and feedback from external reßecting surfaces. By controlling the temperature

and forward injection current, the wavelength can be tuned a few nanometers

to either side of the laser�s principle operating wavelength, though there are

often spectral gaps in this tuning curve. The unadulterated laser tends to run

multimode, where each mode can have a linewidth on the order of 10-100 MHz.

These tuning and linewidth characteristics are unacceptable for many physics

applications. Locking the diode laser system to an external optical cavity,

however, can force the laser to run in a single, narrow (∼1 MHz) mode and
allow continuous tuning over large spectral ranges. Such tunable, frequency-

controlled lasers provide a simple and inexpensive method for probing atomic

resonances.

The diode laser system uses frequency-selective optical feedback from a

diffraction grating to narrow the laser linewidth and control the laser frequency

[29]. An external cavity created by the back facet of the laser diode and the

grating deÞne the laser cavity length and hence the laser frequency. Slight
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Figure 3.1: Top-view of diode laser apparatus

rotations of the grating alter the cavity length, tuning the laser frequency. To

avoid output power ßuctuations due to unwanted cavity length variations, the

laser-grating system must be mechanically and thermally stable. In addition,

the laser power supply must output a stable, low-noise current to the laser. In

this section, I extensively discuss the diode laser system, its components, and

its tuning behavior.

3.2.1 Laser System Components

A grating stabilized diode laser serves as the probe laser. The laser system

itself is composed of the laser diode, a collimating lens, and a diffraction grat-

ing driven by a piezoelectric actuator (PZT), all mounted on a baseplate, as

schematically indicated in Fig. 3.1. Descriptions of the components are given
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below.

The laser and lens

I use an SDL-5401 50 mW continuous-wave single-mode laser diode with an

operating wavelength of 780 nm. The collimating lens is made by Optima

Precision and has a numerical aperture of 0.476. It is mounted with the laser

in a small self-contained package, also made by Optima Precision, which offers

the capabilities of precise three-dimensional positioning and locking of the lens

in order to collimate and direct the beam. Collimation requires motion of the

lens toward or away from the laser, while some aberrations, which appear when

the lens is not properly centered and collinear with the laser, require corrections

by translational lens placement in the directions perpendicular to the beam.

Collimation of the output beam proves remarkable easy using the Optima

mounts. The diode laser outputs an elliptical beam with a polarization perpen-

dicular to its major axis. The beam�s departure from a circular cross-section

leads to aberrations, most notably astigmatism, on it after passing through

the lens. Upon propagation, astigmatism then causes the cross-section of the

beam to undergo a distinct change where its elliptical cross-section gradually

evolves into a circle, and then opens out into an ellipse rotated 90◦ from its

initial orientation. The point at which the cross-section is circular is designated

the �disk-of-least-confusion�. Ideal beam collimation consists of adjusting the

lens to move the disk-of-least-confusion as far from the laser as possible, which

in turn involves adjusting the distance of the lens to the diode facet. Minor

adjustments of the longitudinal lens position smoothly vary the beam between

having a rapidly diverging output, being well-collimated, and having and a
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focus only millimeters from the lens itself. I am typically able to place the

disk-of-least-confusion ∼4 m downstream of the laser. Once collimated, the

beam is aimed directly down the laser axis, which was previously identiÞed as

the center of the dispersive laser output with no lens. The desired orientation

of the laser in the mount produces a horizontally polarized output beam, and

corresponds to the collimated elliptical output of the diode laser having its

major axis vertical.

I should note that the lenses are by no means perfect. The far-Þeld pattern

(∼ 3 m downstream) of the laser beam is not Gaussian, but instead has a

lobed pattern with one or more dark stripes through the beam. I determined

that the Optima lens caused this aberration, and tests of a number of different

lenses found that virtually all physically small lenses, even those with high

numerical aperture, cause similar aberrations in the far-Þeld pattern. The only

lens which seems to give a clean beam was a Melles Griot 06GLC002, but at

the time the system was being assembled it was unavailable. I decided to live

with the non-idealities of the beam. They do not cause signiÞcant problems for

this work because the entire experiment takes place within ∼2 m of the diode

laser itself.

The grating

The choice of grating is determined as a trade-off between greater feedback, and

hence more frequency control, versus coupling out more power. This proves

a difficult compromise. The laser needs to be pulled very far from its free-

running wavelength � the D1 potassium resonance line is at 770 nm, while

the laser runs at 780 nm � requiring a large amount of feedback. Yet seeing
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Figure 3.2: Grating feedback in the Littrow conÞguration.

a large two-photon gain feature, the experimental goal, requires high diode

laser output power. Different groove spacings, blaze angles, and incident light

polarizations were tested to determine what gives the best ratio of output light

to feedback light in order to effectively lock the laser.

I use an Edmund ScientiÞc 1800 lines/mm holographic grating with a visible

blaze in the Littrow conÞguration. In Littrow, the diffracted beam is collinear

with the incident beam and feeds back into the laser as shown in Fig. 3.2.

The grating thus serves as an equivalent end mirror of the laser cavity, with

the back facet of the diode providing the second end mirror. The output beam

consists of the zeroth order, specularly reßected beam. When mounted, the

grating has its rulings vertical (and thus perpendicular to the polarization of

the laser) and the blaze points away from the output beam. This is different
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from the usual blaze conÞguration where the blaze points in the direction of

the output, yet empirically gives us the best feedback qualities. The zeroth-

order output coupling is 30%, while the measured diffraction efficiency in the

Þrst order is 49%, strongly coupling the internal cavity modes to the external

cavity. The external laser cavity is about 1.5 cm long, corresponding to an

axial mode spacing of 10 GHz. In attaching the grating to its mount, I insure

that the rulings are exactly vertical by forcing the diffracted beams to be in

the same horizontal plane as the specularly reßected beam.

Because the output beam is taken directly from the grating, it is deßected

horizontally as the wavelength is scanned. A common solution to this motion is

to modify the external cavity by placing a beamsplitter between the collimating

lens and the grating to pick off a stationary output beam. Unfortunately, this

conÞguration introduces enough cavity losses that it becomes impossible to

effectively lock the laser at the necessary wavelength. This does not pose a

signiÞcant experimental problem, because once the laser is locked to the proper

wavelength the scanned region is so small as to lead to negligible displacement.

The piezoelectric actuator (PZT)

As in all lasers, changes in the laser cavity length cause changes in the laser

frequency. A PZT mounted between the back of the grating and the movable

face of the mount rotates the grating about a vertical axis and precisely alters

the cavity length with electrical control. Once the grating position for feeding

back light at the 770 nm potassium resonance is set by hand, the PZT is used

to scan the grating about this position. I use a Burleigh PZO-007 that provides

a maximum of 5 µm of displacement when 100 V is applied. Generally less
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than 10 V is needed to fully scan through atomic resonance.

Fluctuations

Although the fact that changes in the laser cavity length cause changes in

the laser frequency are used to our advantage in tuning the laser, undesired

changes due to mechanical or thermal ßuctuations must be avoided. I designed

the external cavity to reduce random mechanical movement as much as pos-

sible. All electrical leads are clamped to the table to prevent motion, and a

limp insulated wire is used for direct connections to the laser itself to prevent

transmitting vibration to the structure.

In addition, laser frequency tunes with temperature because both the opti-

cal path length of the cavity and the wavelength dependence of the gain curve

depend on temperature. The laser temperature is monitored using a thermistor

inserted into the aluminum laser mount very near the center of the laser/lens

package. Although precise temperature control is necessary for long term sta-

bility of the laser at a particular wavelength, and I did develop and test a

temperature control circuit, I found that the system works satisfactorily with

only a thermoelectric cooler used to set the temperature of the entire laser-

grating system. The cooler is a square 1.5 inches on a side, and Þts between

the baseplate and an aluminum heatsink. A thin layer of heatsink compound

is applied on both sides of the cooler to insure good thermal contact.

Unfortunately, chilling the laser can create condensation in and on the

laser and mount. On very humid days condensation often causes the laser to

become unstable, preventing accurate data collection. The laser is enclosed

in a plexiglass box in order to aid temperature stabilization by reducing the
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effects of air currents. I also put desiccant in the box, and circulated nitrogen

through it to keep the laser dry. None of these solutions worked particularly

well.

Despite great efforts, mechanical and thermal vibrations caused the tuning

characteristics of the laser to be workable, but less than ideal. The laser mounts

have since been redesigned based upon a design used at NIST that does an ex-

tremely effective job of isolating the laser from any mechanical vibrations. The

new design encloses the lasers in a hermetically sealed box in order to further

reduce the effects of air currents and to minimize humidity and condensation

effects. Finally, the temperature controllers that I designed are now used to

independently control the temperature of the laser diode and of the baseplate.

The continuation of the work described in this thesis uses this new diode laser

setup.

3.2.2 Drive Electronics

The circuit diagram for the laser drive electronics is shown in Fig. 3.3, and a

brief explanation of its workings is given below [30]. The drive electronics are

designed to provide a stable, low noise current supply to run the laser. Normally

for low noise applications diode lasers are driven by batteries. This setup

proves impractical, however, if we wish to modulate the injection current. The

amplitude and frequency output of diode lasers is modulated easily and rapidly

by changing their injection current. This proves extremely useful for tuning

the lasers, yet means that any ßuctuations or noise in the current driving the

laser will translate into frequency and power ßuctuations in the laser output.

Passive and active feedback (using capacitors and a gated FET in conjunction
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Figure 3.3: Diode laser current control circuit.
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with a feedback loop) are used to reduce these ßuctuations and noise signals.

The supply output current is regulated through a FET before being sent to the

laser diode. The current passes through a resistor, converting it to a voltage,

and the feedback loop compares this voltage to a stable reference voltage. The

loop is designed to quickly and efficiently eliminate any ßuctuations from this

reference. Creation of a stable feedback loop and stable reference voltage thus

constitute the most important objectives in building the current supply.

Power to the circuit is provided by a -15 V voltage source connected to

ground through a large capacitor and a zener diode. The capacitor deadens

ßuctuations in the -15 V signal and prevents any large transient spikes in the

current upon turn on. The zener diode package, which includes a heater, acts

as a temperature stabilized voltage reference. It has a stabilized breakdown

voltage of 6.95 V, and the precision to which this zener maintains its breakdown

voltage sets the precision of all other reference voltages in the circuit.

The actual current in the circuit is set by two potentiometers which act

as ideal voltage dividers between the zener output and ground. The relative

difference in the two resistances leads to a coarse and Þne adjust for the volt-

age divider. The output of each potentiometer is buffered, passes through a

resistor, and enters the summing ampliÞer. The output current can be modu-

lated by sending a voltage into either of two modulation inputs, and any such

modulation is also sent into the summing ampliÞer. The voltage set by the

combination of the coarse and Þne current adjustments and the modulation

enters the feedback loop and acts as the stable reference voltage with which to

compare the output voltage heading to the diode laser.

The feedback control loop is best understood as a whole. The steady-state



57

condition of the loop is such that the current and voltage at the inverting input

of the controlling op-amp is zero. This input is a combination of the reference

voltage set earlier and the supply output voltage, which is measured as the

voltage output of the AD620 instrumentation ampliÞer. Assuming DC current

through the circuit, the steady-state of the feedback loop is such that both

input terminals are virtual grounds and a steady current is output by the op-

amp and passed through the FET. If the signal is not steady-state, the system

should be stable such that any ßuctuations are deadened. For example, if the

FET gate voltage increases due to a positive ßuctuation, a greater drain current

will result. The AD620 senses a larger negative voltage drop, and creates a non-

zero voltage reference at one terminal of the controlling op-amp. The difference

between the positive and negative node voltages of the op-amp is negative and

increasing, so the inverted output voltage is positive and increasing. This leads

to an increase in the output current of the op-amp, reducing the gate voltage

and opposing the original ßuctuation. The loop is seen to be stable.

The laser current supply described above produces a very stable, low-noise

output. I measure the noise of the output current by passing it through a

resistor to ground and looking at the voltage on a spectrum analyzer. With

the feedback loop, measurement shows that the supply is ∼10dB quieter than
a current source characterized by Poisson statistics below shot noise in the

frequency range 0-200 kHz. Design speciÞcations require all current modulation

to fall within this frequency range.

Laser diodes are easily damaged by unwanted current or voltage spikes.

Protection was built into the supply in the form of large capacitors to insure

slow and even switching behavior. I also used resistors and LEDs in place of
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Figure 3.4: Protection diode wiring to laser

the laser while building and testing the power supply in order to check that

the supply produced the proper currents and had no signiÞcant transients upon

turn-on or turn-off. During these tests, I recorded power output and threshold

measurements of the laser, both to insure it was working properly and to use

as a comparison and analysis tool if the laser started misbehaving at a later

date.

Despite these precautions, I did lose a few laser diodes, presumably to volt-

age or current spikes. A paper by Wieman et al. [28] suggested that �the

lifetime of laser diodes is substantially increased by also connecting several

forward biased diodes across the leads...These diodes have a large enough volt-

age drop that current does not ßow through them under normal operation.

However, if there is a large forward voltage, these diodes turn on allowing the

current to ßow through them instead of the laser diode.� I installed these pro-

tective diodes as shown in Fig. 3.4, and have not since lost a single diode laser

to catastrophic failure. Although this might be a result of better operating
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procedures and Þnally clawing my way beyond the destructive phase of the

learning curve, retaining these diodes seems like a good practice.

3.2.3 Locking and Tuning the Grating

I have already said that the laser system uses a grating to provide frequency-

selective feedback into the laser. For the feedback to effectively narrow the laser

linewidth, allow continuous frequency tuning, and lock the laser to the feedback

frequency (suppressing lasing at the natural frequency), the grating must be

carefully positioned and aligned. This section describes how to position the

grating for successful locking and tuning of the diode laser frequency.

Grating feedback

The system uses a diode laser with external, frequency selective optical feed-

back from a diffraction grating to provide a narrowband, continuously tunable

source of light. Without external control, the diode laser output is typically

15 MHz wide and can be continuously tuned only over certain limited regions.

Coupling an external cavity to the diode laser greatly increases the laser�s ef-

fective cavity length, and thus narrows its linewidth. Strong coupling to an

external cavity with a frequency selective element such as a grating also im-

proves the frequency tuning of the laser. Optical feedback successfully narrows

the bandwidth to under 1 MHz, and allows us not only to tune the laser over a

region of about ±5 nm, but also to continuously scan the laser frequency over
a range of about 2 GHz.

A careful selection of the pivot point about which the grating is rotated al-

lows us to simultaneously scan the cavity length and the grating feedback angle,

thereby permitting a continuous single-mode scan over a limited range[31]. In
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Figure 3.5: Geometry of light diffraction from a grating.

order to achieve this tracking, two relationships must be satisÞed: the master

grating equation (which determines the coarse tuning of the cavity)

λL =
d

m
(sinα+ sin β) ; (3.1)

and

λL =
2

N
L , (3.2)

which simply states that the cavity length corresponds to an integral number

of half wavelengths. In the above equations, λL is the lasing wavelength, L is

the laser cavity length, m is the diffraction order (0, ±1, ±2, etc.), and d is the
grating spacing. Figure 3.5 deÞnes the angles used in Eq. 3.1. For this system

with lasing frequency 770 nm, cavity length 1.5 cm, and a grating spacing of

1800 lines/mm, the optimized grating pivot point was determined to be 3.0

cm at 440 from the laser facet. These measurements are incorporated into the
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baseplate design shown in Fig. 3.1.

Locking the laser using grating feedback

The following procedure is used to lock the laser to the external cavity created

between the grating and the rear facet of the diode. As a Þrst approximation,

the beam diffracted from the grating must return to the center of the lens after

retracing its outgoing path. To do this, I place a punched hole in a computer

card in front of the laser, allowing the beam to pass through the aperture.

The return beam is visible on the back side of the card, and the horizontal

and vertical adjusting screws on the grating mount are moved until the beam

passes back through the hole in the card. I perform this entire procedure at a

laser current setting well below the operating current, because when the laser

locks to the feedback frequency the output power can suddenly increase by as

much as a factor of two. Near normal operating currents this may take the

laser above its maximum speciÞed output power and optically destroy the front

facet of the diode.

The locking characteristics of the diode are extremely sensitive to a precise

vertical alignment of the return beam. Most references [29] suggest setting the

diode current just above threshold and observing the intensity of the output

beam while adjusting the vertical tilt of the grating. The output beam should

signiÞcantly brighten at the exact vertical position that optimizes feedback into

the diode. At this point, the laser should be operating with grating controlled

feedback near its free-running wavelength. Unfortunately, this procedure did

not work well for the SDL lasers. Numerous vertical settings of the grating

appear to enhance the laser output near threshold, and the output beam often
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consists of more than a single collimated spot. I attribute this unusual behavior

to the special manufacturing processes used by SDL labs to produce narrow-

band, single-mode output lasers. I developed my own alignment method in

order to obtain good locking results.

I use an iterative procedure in which the laser threshold is slowly lowered to

vertically align the return beam from the grating. The diode laser package has

a built-in monitor photodiode whose output current is directly proportional to

the output power of the laser. I pass this current through an current-to-voltage

converter with a 10 kHz bandwidth, and continually monitor the resulting sig-

nal on an oscilloscope; this serves as a window into the workings of the laser.

I use a triangle wave to modulate the diode current, and reduce the current

until the laser is just below threshold throughout the entire modulation scan.

The monitored laser output then simply mirrors the triangle wave modulation.

I then adjust the vertical tilt of the grating while continually observing the

effects of the adjustments using the monitor photodiode. At a vertical posi-

tion that optimizes feedback, the laser can go above threshold at the peaks

of the modulation. A distinct change appears in the monitored output: there

is a severe change of slope at the modulation peaks where the laser power no

longer mirrors the modulation, but instead increases rapidly due to stimulated

(versus spontaneous) emission. These sharp peaks during the small part of

the modulation scan that the laser goes above threshold are shown in Fig. 3.6.

Because more than one vertical position enhances the laser output near thresh-

old, every time the laser locks and goes above threshold, I reduce the current

further (taking it below threshold again) and readjust the vertical position.

The correct vertical grating position yields the lowest laser threshold current.
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Figure 3.6: Monitor photodiode output where the laser is above threshold only
at the peak of the modulation scan. A larger negative output corresponds to
increasing laser output.

Although this procedure sounds quite straightforward, in fact it often proves

quite nontrivial. If the alignment of the planets is in your favor, it may take

only half an hour to achieve a good laser lock. At times, however, even after a

full day the laser might not display ideal locking behavior. The key words for

working with diode lasers really do seem to be patience, patience, patience!

Tuning the Grating

Once the vertical position of the grating is set, the laser frequency should be

locked to the external cavity and the lasing wavelength can be tuned using

the grating�s horizontal adjustment screw. As explained before, the angle at

which the Þrst-order diffracted beam is emitted is wavelength dependent, so
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tuning the grating tunes the angle of the diffracted beam, and thus the laser

wavelength, which makes it back into the laser.

There is a Þnite region over which the laser remains locked to the exter-

nal cavity. This horizontal tuning range of the grating is identiÞed using two

independent methods. Near the end of the tuning range, part of the locking

(diffracted) beam may spill off of the laser diode and illuminate the moni-

tor photodiode directly. This signiÞcantly increases the apparent laser output

power, determined from the photodiode current, and can initially fool the un-

wary experimentalist into believing that the laser has achieved a good lock.

However, this increased photodiode signal is very large, smooth, and does not

have mode hops or a frequency dependence as the grating is tuned further.

This behavior is very different from the typical laser locking characteristics

and is easily identiÞable, so it can act as a Þrst test for determining the end of

the grating tuning range.

A second test can be performed while looking at the laser output at a cur-

rent far above threshold. Again, near the end of the tuning range the laser may

partially unlock and hop back and forth between two very different frequen-

cies: the free-running frequency at which the laser operates without effective

feedback; and the angle-dependent frequency set by the grating. This behav-

ior may appear as a sharing of power between two separate output spots, or

the output may literally hop between two output spots horizontally separated

from one another. The points where I lose control of the laser output frequency

empirically deÞne the grating tuning range.

The grating tuning range as determined above extends only ±5 nm about

the laser�s free-run, room temperature wavelength of 780 nm. The desired
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wavelength, the potassium resonance at 770 nm, is signiÞcantly blue of this

free-run wavelength, and reaching it is beyond the ability of simple grating

control. I implement temperature control in addition to grating control to

further pull the laser frequency to the blue. According to laser speciÞcations,

changing the diode temperature is predicted to shift the entire tuning range by

0.3 nm/◦C. With the laser chilled down to about 5◦C using a thermoelectric

cooler, the laser can be successfully locked to the desired wavelength. At this

temperature, however, the laser frequency is at the very edge of the horizontal

grating tuning range determined above. Ideally the laser frequency should be

positioned in the center of the gain curve, because far from the gain peak the

range of continuous tuning decreases. At the natural laser wavelength of 780

nm it proves easy to scan over ∼10 GHz without hopping laser modes; at
770 nm it becomes difficult to scan even 2 GHz. Theoretically, chilling the

laser further should continue to shift the gain curve until 770 nm is centered

on it, hence improving the tuning characteristics. The condensation problem

mentioned earlier, however, gets worse at lower temperatures and prevents

further cooling.

A thermoelectric cooler is used to compensate for thermal drift and subse-

quent laser frequency changes. Over the course of a day, the laser current at

which the diode laser scans through potassium resonance consistently drops,

perhaps by 10 mA over 8 hours, due to slight increases in the ambient tem-

perature. It is experimentally desirable to perform the experiments at the

highest possible operating currents and powers. In order to keep the laser fre-

quency constant at these high currents, it becomes necessary to chill the laser

a bit more as the day wears on and the system heats up. This variation is



66

not a problem over the data collection time scales, but it is obvious that in-

dependently temperature stabilizing the laser and baseplate would reduce the

laser frequency thermal drift and subsequent changes in the cavity and grating

alignment.

After any signiÞcant horizontal tuning of the laser, the vertical grating

alignment needs to be rechecked using the threshold current method. There

is noticeable cross-coupling between the horizontal and vertical adjustments of

the grating, especially near the edge of the tuning range. In order to walk the

laser down to 770 nm while maintaining a frequency lock, it proves necessary

to tune the wavelength by small amounts (0.5-1 nm) and then re-optimize the

vertical position before going any further. This iterative process leads to the

highest rate of success.

The previous discussion, hints, and suggestions were derived from many

hours (days, weeks, and months, even!) spent Þddling with the diode laser,

redesigning the current supply, and going through numerous iterations of the

mounting apparatus. Some of the �tricks of the trade� are necessarily speciÞc

to this laser and mounting scheme. Much of the discussion is, however, general

enough to apply to other grating feedback schemes.

The initial design and construction of these diode laser systems required a

great deal of time and patience (and a large supply of laser diodes!). The Þnal

product is, however, well worth the effort. Once constructed, the diode lasers

are extremely well-behaved: their frequency behavior is very consistent even

after being turned on and off over a number of weeks; they have very little

noise or laser jitter on the output; and they can remain locked to an atomic

resonance frequency for hours at a time. With a workable design in hand, diode
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lasers thus seem ideal for many atomic and optical physics applications.

3.3 Wavelength Selection

Because the experiment involves working with two tunable lasers (the diode

laser and the Ti:Sapphire laser), it becomes both necessary and convenient

to have some method of determining the output wavelengths at any given

time. These wavelengths change with drive current, temperature adjustments,

grating feedback tuning (for the diode laser), and etalon/birefringent Þlter

changes (for the Ti:Sapphire laser). A wavemeter, which can measure the

wavelength of a tunable laser to better than one part in a million, provides a

simple method of wavelength determination.

3.3.1 The wavemeter

The wavemeter was constructed by Hugh Robinson, based on a design by

Hui-Rong, Benson and Hänsch [32]. It measures wavelength by comparing an

unknown laser wavelength to the known 632.8 nm reference wavelength of a

HeNe laser, where the reference wavelength is actively stabilized against ther-

mal drift by equalizing the intensities of the two active orthogonal components

of polarization (see Sec. 3.3.2). A schematic of the wavemeter is shown in Fig.

3.7. The basic components include a beamsplitter, two steering mirrors, and a

moving cornercube retroreßector. Upon entering the interferometer, the beam-

splitter divides both the unknown and reference beams into two equal intensity

components. These travel down the arms of the interferometer and retroreßect

from the moving cornercube. Because the beams travel down variable path

lengths, when they recombine with themselves back at the beamsplitter inter-
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Figure 3.7: The wavemeter

ference fringes are formed. As the fringe pattern scrolls by with the motion of

the cornercube, the fringes are detected and counted. The ratio between the

number of fringes counted for the two lasers is used to calculate the wavelength

of the unknown laser.

3.3.2 Stabilized Helium-Neon Laser

As described above, the wavemeter measures unknown wavelengths through

comparison with the known wavelength of a He-Ne laser. The stabilization of

the He-Ne wavelength determines the ultimate precision of wavemeter mea-

surements, so I built a He-Ne laser with active frequency control [33] in order

to suit my purposes. If the cavity length is chosen correctly, the gain band-

width of He-Ne gas lasers is such that two modes with orthogonal polarizations

generally lase simultaneously. This is the case for our 7 inch laser tube, and

Fig. 3.8a illustrates the two lasing modes in the laser spectrum. I split the
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two polarizations into separate outputs and detect them with separate photo-

diodes as shown in Fig. 3.8b. Electronic circuitry generates an error signal by

comparing the intensities of the modes, where a nonzero error signal indicates

that the modes have different intensities, corresponding to being asymmetri-

cally disposed under the gain curve. The error signal passes through a negative

feedback loop which controls the laser cavity length, and hence the frequency,

by heating or cooling the discharge tube.

Figure 3.9 shows a detailed schematic of the error electronics used in the

laser. Light incident upon the photodetectors is subtracted and sent into a

current-to-voltage converter. The signal passes through an inverting operational-

ampliÞer equipped with an RC Þlter to prevent oscillations, and then enters

the feedback loop. The feedback loop controls the laser current, and hence

frequency, through a heater attached to the laser tube. The feedback cannot

work, however, if the laser modes are far from their balanced position and

hence outside of the domain of control for the loop. A preset constant bias

voltage heats the laser close to a zero error signal so that when the feedback

loop activates the laser will stabilize.

3.4 The Potassium Cell and Heat Pipe

Before discussing the potassium cell itself, it seems logical to explain why I

chose to work potassium. The alkali atoms all share characteristics which

make them ideally suited for Raman scattering work. They have a hyperÞne-

split ground state, where transitions between the ground state levels are easily

induced. Raman transitions with ground states as the initial and Þnal states

are particularly nice to work with, as ground states have an effectively inÞnite
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lifetime (except for optical pumping), and thus a narrow linewidth. In addition,

the alkali D-line transitions (transitions between the ground state and Þrst

excited state, generally at red to near-IR wavelengths) greatly enhance the

Raman scattering probability. Potassium and rubidium are particularly easy to

work with in this respect, as their excited state resonances are easily accessible

using existing diode laser technology. After some exploration with both of

these elements, I chose to concentrate my efforts on potassium-39, which has

a smaller ground state splitting than either rubidium isotope (462 MHz versus

GHz). At some point in the future, the grous expects to return to rubidium in

order to characterize the effects of different ground state splittings in terms of

two-photon Raman scattering. For the present, however, I have had exceptional

success working with potassium.

Potassium, atomic number 19, is an alkali metal. It is solid and silvery in

appearance at room temperature, with a vapor pressure of 6.4x10−10 mm Hg. It

melts at 63.5◦C and boils at 758◦C. Its ground state conÞguration is 4s1 around

an argon-like inner core. Virtually all naturally occurring potassium occurs in

two I=3/2 isotopes, 39K (93.26%) and 41K (6.73%). Due to the abundance of

the 39K isotope I focus on it for these experiments, though the effects of 41K

present in the sample cannot be experimentally neglected. Familiarity with the

level structures of both isotopes thus proves helpful in spectral identiÞcation.

The relevant level structure of both potassium isotopes is shown in Fig.

3.10. The ground state isotope shift is 235 MHz. Both isotopes have a ground

state hyperÞne splitting, 461.8 MHz for 39K and 254 MHz for 41K. The tran-

sition of interest for this work is the D1 4S1/2 → 4P1/2 transition in
39K,

where the D1 excited state has a radiative lifetime of 25.8 ns and a transition
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wavelength of 7698.98 ûA in vacuum. The electric dipole matrix element for

the 4S1/2 (F=1) → 4P1/2 transition is µo/
√
2, while that for the 4S1/2 (F=2)

→ 4P1/2 transition is µo
q
5/6. I describe calculations of these matrix elements

in Section 5.5.1.

Potassium is dangerous in contact with water, releasing hydrogen with suf-

Þcient heat to cause ignition or explosion. It may cause caustic and thermal

burns if it comes in contact with eyes or skin, and can cause severe burns if

ingested. Luckily, the potassium is well contained in its glass cell! The potas-

sium cell is a 25 mm diameter, 75 mm long standard glass, natural-abundance

potassium cell from Environmental Optical Sensors. The vapor pressure of

potassium at room temperature is so low as to make it difficult to observe a

resonant ßuorescence or absorption signal. The vapor cell is heated to about

425 K (vapor pressure 5.49 x 10−4 mm Hg) in order to bring the number of

atoms in the interaction region up to a workable density of about N = 1013

atoms/cm3.

At room temperature, potassium appears as a shiny silver metal. If, during

or after heating, the cell has a temperature gradient across some part of it of

more than about 20◦C, the potassium atoms preferentially condense on the

coolest part of the cell. This is only acceptable if the coolest parts of the cell

are not its windows � light generally does not travel well through metal-coated

surfaces! Overheating the pyrex cell also must be avoided. Somewhere above

150◦C, pyrex becomes soft enough that the alkali can embed itself in it, turning

the glass black and effectively ruining the optical quality of the cell. In order

to keep the cell at fairly even and controllable temperatures, it is placed in the

heat pipe described below and illustrated in cross-section by Fig. 3.11.
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Figure 3.11: Cross-sectional view of the heat pipe and potassium cell

The heat pipe consists of a 6 inch diameter, 1 foot long aluminum pipe

which was then wrapped with resistive heating tape. The pipe is signiÞcantly

longer than the cell itself because it could only be directly heated around its

circumference, yet the windows of the cell (nearest to the unheated ends of the

pipe) needed to be kept warm enough to prevent condensation. The pipe was

then insulated with glass Þber insulation and covered in aluminum foil to reßect

heat. The ends of the pipe, though unheated, were well covered with insulation

and foil and only had small holes in the covering in order to allow the laser

beams to pass through unhindered. The cell itself was supported on a series

of ceramic standoffs inside the pipe. Ceramic was chosen because it would not

conductively transfer large amounts of potentially damaging heat to the cell.

A thermistor was attached to the center of the cell, and an Omega CN370

temperature control unit used thermistor readings and electronic feedback to
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control the temperature to an externally set value.

3.5 The Optical Layout

The optical layout for performing pump-probe spectroscopy in a vapor cell is

detailed in Fig. 3.12. All of the previously described apparatus as well as all

of the optical elements are mounted to a 40× 120 Newport optical table. The

probe laser beam exits the diode laser apparatus with an elliptical cross section.

It immediately passes through a pair of Melles Griot anamorphic prisms which

modify one axis of the elliptical pattern to circularize the beam shape. It is

useful to circularize the beam so that focusing lenses work with more efficiency

and less aberration, and for better overlap with the circular pump beam inside

of the cell. The spot size upon exiting the prism pair is approximately 3 mm.

Typically 3 − 5% of the probe laser power is lost upon passing through the

prisms.

Two periscoping mirrors raise the probe laser beam height to that of the

Ti:Sapphire beam and rotate the polarization perpendicular to the table. The

laser beam reßects off of a steering mirror and then passes through a 400

mm focal length lens. The optical path length from the laser to the lens is

approximately 110 cm. The beam focuses to a predicted beam waist of 65 µm

in the cell, another 25 cm downstream. A Þnal steering mirror directs the beam

into the side of a polarizing beamsplitter. Roughly 10% of the probe power

is lost here. The beamsplitter combines the opposite polarization pump and

probe beams along nearly copropagating paths. Alignment of the polarizing

beamsplitter is a delicate task, as the beams must cross in the center of the

cell with as much overlap as possible at an angle of less than 15 mrad. The
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crossing angle critically depends on both the position and angle of the probe

beam upon entering the beamsplitter.

The pump (Ti:Sapphire) laser is emitted with a polarization perpendicular

to the table, but four mirrors are immediately used to rotate the polarization

90◦ without changing the beam height. The beam is directed to the far end

of the table with three steering mirrors, travelling about 3 m before being

collimated with a 700 mm lens. Typical spot size on the lens is approximately

5 mm in diameter. The beam then passes through the polarizing beam splitter

and into the cell. The predicted beam waist in the cell, about 70 cm from

the lens, is 150 µm, though self-defocusing effects have a pronounced, but not

easily characterized, effect on actual beam size and shape.

Upon exiting the cell, the two beams are allowed to freely propagate for

about one meter, separating them enough so that I can selectively pick off

the transmitted probe beam for direction into a photodetector while allowing

the pump beam to pass by into a beam dump. Once the transmitted probe

beam has been captured, the beam is refocused so that the spot size on the

photodetector is about 2 mm in diameter. The probe beam passes through

two apertures as it approaches the detector to block off-axis light, since any

stray or scattered pump light only adds excess noise to the signal. A linear

polarizer placed in front of the detector screens unwanted pump light that

makes it through the apertures and has not been depolarized through scatter

or interaction in the cell.

Neutral density Þlters attenuate the probe beam in various amounts for

various data runs. These attenuators are placed in the probe beam before

entering the polarizing beamsplitter and/or in the transmitted beam before
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entering the detector. Special care needs to be taken in the placement of

transmissive elements such as these on the table, because the effect of unwanted

optical feedback into the lasers due to reßections off of lenses and neutral

density Þlters can be quite pronounced.

3.6 Data Acquisition

Data collection consisted of varying an experimental parameter, such as probe

laser power or pump-probe crossing angle, and then recording the transmitted

probe Þeld in the detection region. The transmitted Þeld is characterized by the

optical spectrum, measured as a function of frequency. The probe frequency

is scanned up to 2 GHz by supplying the PZT on the back of the grating with

a triangular wave, amplitude 0.1-10 V and frequency 10-12 Hz. For any given

parameters, the probe intensity, crossing angle, and pump-probe overlap must

all be optimized to observe the largest two-photon gain.

The time evolution of the transmitted probe intensities are measured using

a fast UDT-020D photodiode. The detector has a built in current-to-voltage

converter and a number of externally controllable gain settings for output am-

pliÞcation. The detector signal is monitored on an oscilloscope. It proves

convenient to trigger the oscilloscope using the TTL output from the function

generator in order to view a stable waveform as the PZT is scanned.

A 486 PC microcomputer serves as the central piece of the data acquisi-

tion system. It is equipped with a National Instruments AT-MIO-16 analog,

digital, and timing I/O board and numerous software packages that facilitate

collection and analysis of the data. The collection program was written using

National Instruments LabVIEW for Windows software. LabVIEW is graphi-
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cal based programming system which has application speciÞc libraries for data

acquisition and storage and allows easy adjustment of data collection parame-

ters through an interactive user interface. The TTL function generator pulse

triggers the program to accept a waveform which reproduces the observed oscil-

loscope trace. Typical scans take 2000 data points at a rate of 20,000 point/sec,

corresponding to a frequency resolution of about 2 MHz per data point. The

data is then written out to a Þle in a form usable by other graphing and anal-

ysis programs. Jandel ScientiÞc�s Sigma Plot for Windows was used to graph

and analyze the collected data. Subtracting out background light, calibrating

the frequency scan, and calculating the gain is all straightforward using the

capabilities of this program.



Chapter 4

Experimental Procedures and Results

Previous chapters reported on the theoretical basis and the equipment used

in our current work developing a new two-photon gain medium. This chap-

ter discusses experimental procedures and results in this endeavor. I perform

pump-probe spectroscopy in a potassium vapor cell and look at the transmis-

sion spectrum of the probe wave interacting with a strongly driven atomic

vapor when the probe wave is nearly copropagating with the driving Þeld. I

characterize the transmitted Þeld through a measurement of the probe intensity

as a function of probe frequency. I explain all of the features in the probe-beam

transmission spectrum, including the appearance of ampliÞcation due to two-

photon Raman scattering. The experimental results described in this chapter

are compared with theoretical predictions in Chapter 5.

Before delving into the experimental nitty-gritty, I once again emphasize

the accomplishment this work represents. I have seen ∼30 % two-photon gain,
easily surpassing the best previous results of ∼0.1 % seen in a dressed-atom

gain medium. This success is in large part due to the relative insensitivity of

the Raman scattering process (upon which our gain is based) to broadening

81
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mechanisms. As a result the gain features are very narrow, allowing us to

resolve features on a MHz scale. Previous work displayed two-photon gain

on a large background of one-photon gain, while in our experiment the gain

features are well separated and spectrally resolved.

4.1 Review of Raman Scattering

A brief review of Raman scattering in potassium, our atomic gain medium,

follows. Understanding Raman scattering is important for our experiment,

which observes signiÞcant two-photon gain in a new type of laser-driven two-

photon optical amplifying medium based on a two-photon Raman scattering

process. The initial and Þnal states used in the Raman transition are the F=1

and F=2 hyperÞne sublevels of the 4S1/2
39K ground-state manifold.

One-photon Raman Stokes scattering, shown in Fig. 4.1a, involves one

pump photon ωd and one scattered probe photon ωp in making a transition

from the initial state | a > to the Þnal state | c > via a virtual state associated
with the excited state | b >. In order for a one-photon Raman transition to
take place between these states, the difference frequency of the applied Þelds

(i.e., the probe-pump detuning frequency) must equal the 462 MHz hyperÞne

frequency splitting of the ground states. Application of a strong driving Þeld

at ωd then generates new scattered frequencies at ωp = ωd ± 462 MHz. The
intensity of the scattered signal increases with the pump intensity until sat-

uration occurs. In our system, the scattering process ampliÞes the radiation

at the frequency ωp = ωd − 462 MHz because optical pumping has created a
population imbalance in which state | a > is more populated than state | c > .
This will be further discussed in Section 4.3.2. The ampliÞcation is, of course,
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Figure 4.1: One-photon and two-photon Raman Stokes scattering in 39K.
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at the expense of the pumping laser � one laser photon is lost for each Stokes

photon that is created. Absorption is expected due to the corresponding anti-

Stokes process, which involves a transition from | c > to | a > at frequency

ωas = ωd + 462 MHz. In our experiment, the inversion is not such that this

process will, of itself, be ampliÞed.

A two-photon Raman process is shown in Fig. 4.1b. It involves the absorp-

tion of two pump photons and emission of two Raman photons in making the

transition between states | a > and | c > . The two-photon process occurs at
frequency displaced from the driving Þeld by half of the ground-state splitting,

ωp = ωd− 231 MHz. The intermediate scattering level | b > nearly equidistant
from each ground state serves to signiÞcantly enhance the transition. Even

so, the two-photon Raman transition is a second order effect, and hence has a

cross-section for occurrence far smaller than the one-photon cross-section. In

addition, the two-photon gain coefficient is intensity dependent, differing from

the usual constant gain coefficient Þxed by the experimental parameters of the

system.

The small cross-section and intensity dependence of two-photon gain lead

to predictions concerning the expected gain behavior in the Raman system.

For a typical transition the probe gain due to one-photon Raman scattering

increases with the incident probe intensity until the saturation intensity is

reached. The saturation intensity depends on a number of parameters1 and is

inversely proportional to the absorption cross-section/gain coefficient. Because

the one-photon gain coefficient (B(1)) is much larger than that for two-photon

1Recall that in Chapter 2 we deÞned Isat = c~ωqsat/Vc where the one-photon saturation
photon number is found as q

(1)
sat = γ/2B(1) and the two-photon saturation number is

q
(2)
sat =

p
γ/2B(2).
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gain (B(2)), I expect the maximum gain (at the saturation intensity) to be

quite large. However this gain saturates quickly, so high intensities will actually

reduce the observed ampliÞcation. Because the cross section of a two-photon

transition is so much smaller than that of a one-photon transition, the two-

photon saturation intensity is much higher. The two-photon gain will then

increase with probe power over a much larger range, but eventually it too may

become saturated. At this point, there is the possibility of observing higher

order multi-photon processes. To test these predictions, I look at Raman gain in

the potassium cell as a function of probe power. The experimental procedures

used are described below.

4.2 Single-beam Spectroscopy

Here I describe simple absorption spectroscopy in a glass potassium vapor cell.

Initially absorption spectroscopy was performed as a test of the diode laser,

and allowed determination of the laser�s short- and long-term frequency stabil-

ity and the tuning behavior of the laser frequency. I also optimized the laser

temperature, current, and mechanical arrangement for smooth and stable op-

eration. Later, Þnding and scanning about the potassium absorption resonance

became part of the daily turn-on procedure for two-photon gain spectroscopy.

4.2.1 Tuning the diode laser to resonance

The diode laser Þrst needs to be tuned to the resonant atomic transition. The

procedure used, and that described here, is taken directly from the procedure

given in the paper by Wieman et al. [28]. We tune the laser close to the known

atomic transition wavelength as measured using the wavemeter; for best results,
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we need to be within 0.5 ûA of the transition wavelength at this stage.

We then pass a moderately strong beam through the cell, and ob-

serve its path using an IR viewer. In order to efficiently search

for resonance, we wavelength tune the laser both by mechanically

tuning the grating and by modulating the laser current. When the

laser frequency is tuned within the Doppler proÞle of the absorption

line, a strong track of ßuorescence is visible in the cell. The current

modulation is used so that if the laser has a tuning discontinuity

that encompasses the desired wavelength, some point in the current

modulation should still hit the right wavelength. Iteration of this

procedure should produce results.

If grating and current tuning are unsuccessful in Þnding ßuorescence, Wie-

man suggests that the temperature can be changed up or down slightly and

the whole procedure repeated. I never found this to be necessary, however,

because as long as the laser remained locked at the proper wavelength, grat-

ing and current tuning proved sufficient. (The few times it proved difficult to

locate the atomic resonance, it was later discovered that the laser was run-

ning at its unlocked natural wavelength, many nanometers from the potassium

resonance.)

The gross changes to the laser frequency induced by current modulation

prove extremely useful for Þnding the initial ßuorescence track. For spec-

troscopy, however, the probe laser output power should not vary as it does

with current modulation. Instead, I stabilize on resonance using a constant

current and then scan the laser frequency by tuning only the grating position,
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which then alters the laser cavity length. To modulate the grating position,

the PZT mounted to the back of the grating is driven with a 10-12 Hz, 10 V

peak-to-peak, triangle wave from a function generator. A large DC offset keeps

the modulation signal positive, necessary for keeping the PZT happy. Usually

it is not difficult relocate the resonant ßuorescence track after changing the

frequency scan from one due to current modulation to one caused by a PZT

scan at a Þxed current.

Observation of a ßuorescence track along the path of the laser beam through

the cell indicates that the laser is within the Doppler proÞle of the absorption

line. It does not, however, give any indication of how far in frequency the

laser is scanning or whether the laser frequency is scanning smoothly. I derive

this information by observing the beam transmitted through the cell with a

photodiode detector and an oscilloscope. I trigger the oscilloscope from the

function generator TTL output in order to get a stable display as the PZT drive

is adjusted. As the laser frequency scans through resonance a dip should be seen

in the transmitted beam intensity due to resonant absorption. On a practical

note, in order to observe this dip the beam generally needs to be attenuated

to prevent saturating the detector. The necessary attenuation is put in the

beam before it enters the cell, both to prevent the optical transition itself from

saturating and to increase relative change in signal strength due to absorption.

The cell is also heated to increase the number density of interacting atoms,

correspondingly increasing the absorption. Depending on the temperature and

saturation properties, there may be anywhere from a 5-100% reduction in the

signal as the laser scans through resonance. This is indicated in Fig. 4.2, which

shows the single-beam absorption dip for differing cell temperatures.
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Figure 4.2: Single-beam absorption dip. (a) At low temperature the absorp-
tion dip proÞle appears Gaussian. (b) At higher temperature the absorption
saturates.

4.2.2 Scanning the atomic resonance

The goal now is to get the laser to smoothly scan at least 2 GHz about the

absorption line, with few or no modehops. In a full 2 GHz scan, it is likely that

�discontinuous steps of photodiode output occur across the oscilloscope trace,

and part of the absorption dip may appear on a number of these steps. These

steps, or mode hops, correspond to transitions from one longitudinal external

cavity mode to another, and exhibit somewhat random spacing and hysteresis

[28].� Figure 4.3 displays a typical frequency scan through resonance where the

laser modehops near the center of the absorption dip. The lasing frequency

after the modehop is again slightly to the red of the atomic resonance, and

hence the laser scans the absorption dip a second time.There are various ways

to try to reduce the number of mode hops and get a smooth scan about the

resonant absorption line, most of which are rather unscientiÞc and depend on
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Figure 4.3: Diode laser frequency scan showing modehops

how well you commune with the laser on any given day. Small tweaks to the

grating angle and diode drive current are the best methods for optimizing the

wavelength scan. Adjustments to the laser temperature and the amplitude and

offset of the modulation may also prove beneÞcial. Patience and luck are your

best friends for this adjustment.

Oftentimes after the atomic resonance is found and the laser is smoothly

scanning through it, the laser is not at its optimal operating current of about

75 mA (for the SDL-5401 lasers we use). It is best to try to run as close to

the operating current as possible, because higher currents shorten the laser

lifetime while lower currents reduce the power output of the laser. We do have

some control over the current at which we can scan through the absorption

resonance. Due to mode hops in the diode laser such as those just described,

the atomic resonance is typically found simultaneously at several operating
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currents periodically spaced by about 35 mA. Temperature tuning is used to

shift a resonance until it occurs at or near the operating current. For example,

the atomic resonance is often found at currents of about 50 mA and 85 mA, and

either the 50 mA resonance needs to be shifted to higher current, or the 85 mA

resonance to lower current. To shift an absorption line found at 50 mA up to

higher current, recall that increasing laser current heats the laser. To track the

resonance, we then further cool the laser and mount using the thermoelectric

cooler (TEC) mounted beneath the laser baseplate. Similarly, to shift the 85

mA absorption line to a lower current, we reduce the laser current, cooling the

laser. To compensate for this change, then slightly heat (or more accurately,

cool less) the laser and mount. For this experimental setup, a TEC current

between about 600 and 700 mA reliably chills the laser such that its locked

wavelength is at (or very near) the atomic resonance when the laser is near its

operating current2.

4.3 Two-beam spectroscopy

The absorption-dip spectroscopy described in the previous section is used to

put the diode laser (probe laser) on resonance. Resonant absorption, such

as that described above, appears with only a single beam incident upon the

potassium cell. New effects become apparent when a second beam interacts

with the Þrst in the atomic medium. To study such interactions, we shine a

second resonant laser in the cell and look at the effects of this pumping laser

2Recall from Sec. 3.2.3 that because we do not actively temperature control the laser,
the optimal TEC current will change slightly on a day to day basis due to changes in the
ambient temperature. It will also change during the course of a day as the laser and mount
heat up during use.
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on the probe absorption. I previously described the optical layout for probe-

pump spectroscopy in Sec. 3.5, and the new spectral features created by the

probe-pump interaction will be described in a later section. First, though, a

few of the details concerning both the second laser and the relative positioning

of both lasers need to be discussed.

4.3.1 The pump laser

The actively stabilized Ti:Sapphire ring laser acts as the pump laser, and the

Þrst order of business requires locking the Ti:Sapphire laser to resonance. This

involves Þrst tuning the laser frequency close to the atomic resonant frequency

by turning the laser�s birefringent Þlter to approximately the right angle (given

by the laser wavelength calibration) using the micrometer adjustment screw.

A reading of 0.730 on the micrometer corresponds to 770 nm. Smaller fre-

quency adjustments about this set point are made by scanning the thin etalon.

Although the laser output can be directed into the wavemeter in order to ex-

plicitly read out the laser frequency, this is unnecessary unless the laser proves

to be extremely uncooperative. Instead, we pick off about a 40 mW beam and

direct it into the potassium cell. If the pump is set near the proper frequency,

ßuorescence from the atoms should be plainly visible as the lasing frequency is

continuously scanned by up to about 25 GHz. Maximum pump output power

at the potassium resonance is about 1 W.

Once both the Ti:Sapphire (pump) beam and the grating stabilized diode

laser (probe) beam are on resonance, the two lasers are brought to a common

focus in the center of our 7 cm long potassium vapor cell and are adjusted to

cross at about a 12 mrad angle. Nearly copropagating beams are used in order
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to get good probe-pump overlap throughout the length of the cell, and hence

open the door for probe-pump interactions to take place. With the beams

crossing in the cell, the pump laser now serves a dual purpose, simultaneously

stimulating two independent processes to occur in the potassium atoms.

4.3.2 Optical pumping

First, the pump Þeld optically pumps atoms from the F=2 to F=1 potassium

ground-state hyperÞne level (∆hfs = 462 MHz) as they move into the beam,

thus creating the necessary inversion for gain to take place. Optical pumping

is a pump-only effect � like resonant absorption, it requires only a single laser

beam. The pump beam interacts with both atomic ground states and causes

potassium atoms that drift into the strong pump beam to have their popula-

tions modiÞed such that a large fraction of the atoms are moved to their lowest

ground state.

The basic premise behind optical pumping is fairly straightforward. Potas-

sium has two closely spaced ground-state levels between which the unexcited

atoms in any sample are virtually equally distributed3. Optical pumping uti-

lizes the fact that absorption and scattering of resonant light can lead to large

population imbalances in atomic ground states and excited states. In our case,

the pump laser frequency is slightly red detuned from resonance. �For [red]

detuning the pump-Þeld absorption rate for the F = 2 state is larger than that

3Boltzmann�s principle states that the relative populations of any two energy levels E1 and
E2 in a collection of atoms in thermal equilibrium at temperature T is given by

N2
N1

= exp

µ
−E2 −E1

kT

¶
.

However, with the ground state frequency difference of only 462 MHz, we calculate
N2/N1 = 1.0001 near room temperature, a negligible population difference.



93

K39

ωd

4S1/2

4P1/2

4S1/2

4P1/2

ωd

ωd
ωd

(a)

(b)

probe

pump

K39

K39

K39

Figure 4.4: The effect of optical pumping on the potassium ground-state pop-
ulations. (a)The ground state populations are evenly distributed in thermal
equilibrium (i.e., when the atom is not interacting with any light Þelds); (b)
The accumulation of population in the lowest ground state due to optical pump-
ing.
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Figure 4.5: Raman scattering resulting from pump-probe interactions

for the F = 1 state, whereas the decay of the excited [P1/2] state into F = 1

and F = 2 states is determined by the branching ratio, which is independent

of frequency detuning� [34]. This cycle serves to preferentially populate the

F = 1 ground state. Note that the unequal population distributions offers the

opportunity to see optical gain due to population transfer from the F = 1 to

F = 2 ground state.

4.3.3 Stimulating Þeld

In addition to optical pumping, the pump beam also acts as the Þeld which

supplies photons to initiate the two-photon Raman process. When the optically

pumped atoms move into an area Þlled by both the pump beam and the probe

beam, new interactions are stimulated due to the presence of multiple, nearly-

resonant light Þelds. Processes such as one- and two-photon Raman scattering

result from probe-pump effects in which both beams play an integral role.

Figure 4.5 schematically indicates the appearance of probe-pump effects. The
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relationship between optical pumping and Raman scattering proves critical in

our results. Gain on the Raman transitions requires a population inversion

between the potassium ground states.

4.3.4 Probe-pump alignment

The probability of probe-pump interactions like Raman scattering processes

taking place relies on good probe-pump alignment and overlap in the cell. In

addition, for best results the diode laser output should be linearly polarized

orthogonal to the pump laser4 and the relative pump and probe beam intensi-

ties must be carefully controlled. I use a 700 mm focal length lens to collimate

the 920 mW pump beam to a beam waist of 64 µm (intensity 1/e radius) as it

passes through the cell, corresponding to intensities of about 7 kW/cm2, and

a 400 mm focal length lens to collimate the probe beam to a predicted diam-

eter of 28 µm (intensity 1/e radius) inside the cell5. I study the normalized

transmission of a probe beam through the cell as a function of its frequency

for several different probe beam powers, and vary actual probe power levels

using neutral density Þlters. The probe laser has a maximum output power of

about 10 mW, of which about 3 mW are always lost before the beam enters the

cell. I further attenuate the beam with Þlters ranging from optical densities of

zero to 2.6 (transmittances from 1 to 2.5×10−3), giving predicted probe beam
intensities between about 0.71 W/cm2 and 285 W/cm2.

Relatively small angles are maintained between the beams in order to opti-

4A study of the relevant product matrix elements for one-photon Raman transitions shows
that linear orthogonal polarizations of the pump and probe laser beams maximizes the
transition probability[35].

5As described in Section 1.3, there is a fair amount of uncertainty in the calculated beam
sizes of both the pump beam and the probe beam due to self-defocusing effects in the cell
that are difficult to quantify.
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mize the region of pump-probe overlap in the cell. A secondary beneÞt of small

crossing angles is that they effectively eliminate the Doppler contribution to

the Raman linewidth. Raman interactions involve pairs of photons in making

a transition between atomic states, where the transition takes place only when

a resonance condition � the detuning ∆p between the incident laser beams is

equal to the Þxed ground state splitting of the atom � is satisÞed in the ref-

erence frame of the atom. Yet in the special case where the pump and probe

beams are copropagating, this detuning is unaffected by atomic motion.

Consider a pump-probe spectroscopy experiment in which the beams are

copropagating and we account for atomic motion. A moving atom sees the

pump and probe frequencies ωd and ωp Doppler shifted by almost an equal

amount ωD, giving apparent laser frequencies ω
D
d = (ωd − ωD) and ωDp =

(ωp−ωD). The Doppler averaged pump-probe detuning, denoted ∆Dp , relevant
for a Raman transition is then

∆Dp = ω
D
p − ωDd = (ωp − ωD)− (ωd − ωD) = (ωp − ωd) = ∆p . (4.1)

The effects of atomic motion have no effect on the detuning, thus allowing

the Doppler broadening of an absorption line to be completely eliminated.

Although copropagating beams or crossing angles signiÞcantly smaller than 12

mrad could not be used due to the appearance of four-wave mixing6 processes,

the small crossing angles used are still quite close to the ideal of perfectly

copropagating beams.

In order to set the crossing angle, both the pump and the probe beam

have two steering mirrors before entering the polarizing beamsplitter which

are used for aligning and overlapping the beams in the cell. I relied on two

6Four-wave mixing is described further in Section 4.7.
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easy and commonly used methods for effecting this overlap. First, I look at

the horizontal separation between the pump and probe beams at symmetric

positions before and after the cell. The separation distance on either side of the

cell should be equal, while the pump and probe beam positions should reverse,

indicating a crossing in the cell. As a second check, I place a mirror at the cell

entrance a distance x from the center of the cell, and reßect the two beams to

an accessible location. If the beams are properly aligned, at a spot a symmetric

distance x downstream from the mirror they will intersect and overlap.

4.3.5 Optimization of parameters

Once the lasers overlap and cross in the center of the cell, I scan the laser

frequencies about the atomic resonant frequency and look for an indication of

a signiÞcant pump-probe interaction, given by the appearance of new spectral

features in the probe spectrum after exiting the cell. Because the optimal fre-

quency at which to Þx the pump laser in order to stimulate scattering processes

is unknown, initially I scan the frequency of both lasers simply to increase the

chances of noticing anything interesting. Once an interaction is seen, however,

I Þx the pump laser at a frequency red detuned from the atomic resonance (for

optical pumping reasons) and only scan the probe laser. If the initial align-

ment is done carefully, distinct gain or loss features in the probe transmission

spectrum near the atomic resonance frequency (i.e., within a few GHz) will be

observed. Even if no features are seen at Þrst, it usually not difficult to mod-

ify the beam crossing angle in order to create a more optimal beam crossing,

and then, as if by magic, the interaction features will appear. If this proves

difficult, the chance of good overlap is increased by removing the lens from
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the pump beam, enlarging the beam in the cell. Because Þnding at least some

small gain feature from which to start has never proved problematic, I have few

other words of wisdom other than �Make sure the lasers are on resonance� and

�Make sure the beams cross/overlap in the cell, not before or after it!� The

initial locking of both lasers to resonance and Þnding a gain feature generally

takes one or two hours.

4.3.6 One-photon Raman transitions

One-photon Raman transitions are one of the most common and easily identi-

Þable pump-probe interactions. Because the Raman transitions in our experi-

ment take place between two long-lived potassium ground states, and because

Doppler broadening of the Raman transitions can be effectively neglected, the

Raman gain features should be very narrow � only a few MHz full width at half

maximum. The expected narrowness of these features will allow us to distin-

guish them from other scattering features which should appear much broader.

A Þrst stab at optimizing the experimental parameters thus involves Þnding

and optimizing the gain due to one-photon Raman transitions. Because the

probe beam is focused so tightly, the beam intensities are high enough to

saturate the one-photon Raman transition. As a result, in order to see the

highest gains I strongly attenuate the probe beam before it enters the cell.

The best results are seen with probe beam powers of less than 1 µW. I then

adjust the pump-probe crossing angle in the cell and the beam intensities by

changing the positions and focal lengths of the lenses used to focus the beams.

In addition, I test the effects of varying the detuning of the pump laser from

the atomic resonance and set the pump at its approximate optimal detuning.
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The detuning is non-zero because if it is too large, few transitions will be

stimulated and the one-photon Raman gain will decrease, yet if the detuning is

too small other nonlinear will processes dominate and swamp out the Raman

gain. For best results (largest gain with fewest competing effects) the pump

laser is tuned approximately 1.4 GHz below the 770 nm 4S1/2 (F=1) → 4P1/2

(F=2) potassium D1 transition. This detuning is small enough that we don�t

interact with the 766 nm D2 (4S1/2 → 4P3/2) optical resonance. The optimal

detuning is somewhat variable as other parameters are altered.

To further increase the one-photon Raman gain once the crossing angle,

detuning, and intensities are set, the cell temperature is gradually increased

to 150◦C, corresponding to a number density of about 1013 atoms/cm3. Higher

temperatures correspond to higher number densities in the potassium cell, and

with more atoms taking part in the transitions this increases the gain until

saturation occurs. In one of our Þrst experiments, we mapped out one-photon

Raman gain versus temperature up to 150◦C with a 1.3 mW probe beam,

as shown in Fig. 4.6. We found continuing increases in gain over this full

range, though perhaps early saturation effects are manifesting themselves at

the highest temperatures. Increasing the temperature further should continue

to increase the gain. However, we are reluctant to take the temperatures higher

than the operating temperature of 150◦C, because at much higher temperatures

glass becomes soft enough that the potassium can embed itself in it and destroy

the optical quality of the cell [36]. With only a single cell to work with, we could

not perform our own tests of the temperature at which the cell is destroyed.

However, future work in this area might warrant trials at higher temperatures.

The parameter optimization just described, including the strong attenua-
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Figure 4.6: One-photon Raman gain as a function of cell temperature

tion of the probe beam, sets up our system such that high one-photon Raman

gain is observed. In fact at times the gain is so high, >10,000%, that no other

spectral features are seen above the noise level of the system! We tend not to go

to extremes in this endeavor, however, since the parameters that give the best

one-photon Raman gain are not identical to those giving the best two-photon

Raman gain, and two-photon gain represents our eventual goal. The temper-

ature and detuning can be set fairly accurately at this stage, and the crossing

angle will only change slightly between the optimization of one-photon and

two-photon Raman gain. The beam intensities, however, change dramatically,

as one would expect since two-photon gain is an intensity dependent effect.

Without modifying any other parameters, the next step involves increasing the

probe beam power in order to get to a regime where one might expect to see
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Figure 4.7: Typical probe transmission spectrum

two-photon Raman gain. First, however, Fig. 4.7 shows a typical probe beam

output spectrum taken with an incident probe power of about 0.5 mW. A brief

description of the general spectral features follows, as does a description of the

data collection and analysis procedures used in creating this spectra.

4.4 General spectral features

Experimentally I measure the probe transmission spectrum as a function of

pump-probe detuning. A typical spectrum is shown in Fig. 4.7, and has a

number of easily distinguishable features. I interpret these resonances, starting

from the left, as follows.

The large, spectrally broad ampliÞcation seen at both the far left and the far

right are so-called Rabi resonances. These AC-Stark shifted resonances result
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from the shifting and splitting of atomic energy levels when the atom interacts

with a strong electromagnetic Þeld like our pump beam. I discuss Stark shifting

in more detail in Chapter 5, but the general principles are illustrated in Fig.

4.8 [37]. For simplicity the Stark effect is illustrated for a two-level atom, but

the ideas (though not the exact splittings) are equally applicable to an atom

with more than two levels. A laser Þeld at frequency ωd that is detuned from

resonance by frequency −∆ creates a pair of virtual atomic levels, shown as

dashed lines. At high laser intensities, the energy-level structure is modiÞed by

the AC-Stark effect to become pairs of real levels separated by the generalized

Rabi frequency Ω0. Rabi resonances then result from a three-photon effect in

which the atom simultaneously absorbs two pump-laser photons and emits a

probe photon at frequency ωd + Ω
0 , consequently making a transition to the

excited state. As a result of this process, the probe wave experiences gain at

the frequency ωp = ωd + Ω
0.

If I extend these principles to the potassium atom, I must include at least

three levels in the treatment � each of the hyperÞne split ground-state levels,

as well as the excited state level7. In this case, each atomic energy level splits

into three levels split by various frequencies that are functions of the pump

detuning and the ground-state hyperÞne splitting. A number of potential Rabi

resonances are then predicted, because transitions can take place between each

triplet of ground-state levels to any of the states in the excited state triplet.

However, as a result of signiÞcant Doppler broadening in the medium only

one very broad resonance is experimentally seen. The individual peaks are

unresolvable and have been combined into a single broad feature. This is

7In a careful treatment, the splitting of the excited state into two levels is also taken into
account.
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Figure 4.8: The creation of Rabi resonances in a two-level atom

theoretically veriÞed in Chapter 5. Doppler broadening also causes the wings

of the leftmost Rabi feature to create a non-zero, spectrally broad ampliÞcation

throughout the region of two-photon gain. Eliminating this background effect

is a priority in future work.

The tall, narrow peak shifted from the pump by about the 462 MHz ground-

state hyperÞne splitting of potassium, ωp = ωd −∆hfs, is a result of saturated
one-photon Raman Stokes gain [38] from 39K and corresponds to the transition

illustrated in Fig. 4.1a. The mechanics of Raman gain have been discussed

earlier, and the observation of gain at this frequency simply indicates that the

lower energy ground state must be the more populated one. The very small

gain peak just to the right results from an identical one-photon Raman Stokes

gain process occurring in 41K, where the 41K ground-state hyperÞne splitting

is ∆hfs = 254 MHz. This feature is much smaller than that of
39K because the
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natural abundance of 41K is only 6.7%.

The dispersive-shaped feature near zero detuning in the transmission spec-

trum represents stimulated Rayleigh gain (and absorption) due to population

oscillations between the ground state hyperÞne levels [39]. Rayleigh gain only

occurs when the pump-probe detuning is less than the inverse of some charac-

teristic response time. The superposition of the pump and probe beams inside

the atomic medium creates a beating Þeld, where the beat frequency is equal

to the pump-probe detuning. The response time of the atomic medium sets

the time scale of Þeld ßuctuations that the atom can effectively follow. The

frequency response of the atom is then given by the inverse of the response

time. When the detuning, and hence the beat frequency, is larger than the

frequency at which the atoms can respond, the atoms see only the constant,

averaged Þeld. When the pump-probe detuning is small enough to be shorter

than the frequency response of the atoms, however, the atoms see the varying

Þeld and the populations of the atomic levels can couple with the strong beat

frequency. An atom may then absorb a pump (or probe) photon and re-emit a

probe (or pump) photon without changing energy levels, thus cycling popula-

tion between the ground state and some excited virtual state. The line shape

of this Rayleigh scattering process appears dispersive whenever the pump is

detuned from resonance. This has been explained in terms of the frequency

dependence of the oscillation probability [40, 41].

The spectrum has a distinct symmetry about the dispersive Rayleigh res-

onance centered at a probe-pump detuning of zero. On the blue side of the

Rayleigh resonance (positive probe-pump detunings), the Raman scattering

taking place transfers population from the F=2 to F=1 ground state, as shown
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Figure 4.9: Anti-Stokes Raman scattering

in Fig. 4.9. Optical pumping has already depleted the F=2 state, and hence

I observe loss rather than gain due to these anti-Stokes Raman scattering

processes. The small absorption dip and larger narrow dip correspond to

one-photon Raman anti-Stokes loss of 41K (ωR = ωP + 254 MHz) and
39K

(ωR = ωP + 462 MHz), respectively. The rightmost broad peak is then the

Rabi resonance already discussed. In many of the spectra, this last Rabi res-

onance is superposed on the leading edge of the Doppler broadened resonant

absorption dip, explaining the decrease in the transmission spectrum at the

largest blue detunings.

To summarize, at relatively low probe beam powers (∼ 0.5 mW) spec-

tral features include the standard one-photon Raman Stokes and anti-Stokes

processes (one-photon Raman resonances) at probe-pump detunings equal to

the atomic ground-state splittings. A dispersive Rayleigh resonance is found

around the point of zero probe-pump detuning, and broad Rabi resonances
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are seen at frequencies displaced from the pump by an amount related to the

generalized Rabi frequency.

4.5 Data Analysis

While optimizing experimental parameters in the system, I observe the trans-

mitted probe beam power as a function of probe frequency in real time using

an oscilloscope attached to a photodetector that looks at the probe beam after

exiting the cell. When taking data such as that shown in Fig. 4.7, however,

I send the photodetector signal directly to an IBM 486 clone for data storage

and analysis. The collection program mimics the output of a digital storage

oscilloscope.

The data for a given set of experimental parameters involves collection

of three individual data scans: the probe transmission spectrum taken with

both beams passing through the cell; the probe beam absorption spectrum,

recorded with the pump beam blocked; and a baseline of scattered pump light

recorded with the probe beam blocked. Using simple data transformations

and manipulations I calculate the actual probe gain and the frequencies of

the resonance features. A polarizer in front of the detector blocks pump light

that has been scattered by the cell windows into the direction of the probe

beam. Additionally, unwanted, scattered light is minimized before reaching

the detector by using apertures in the probe beam to block stray pump light

from the probe beam output. In order to eliminate background light that has

escaped these measures, I subtract the measured pump-beam background sig-

nal from the desired probe transmission signal. The probe-only spectrum then

deÞnes a zero-line for gain calculations (y-axis in all of our data): wherever
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Figure 4.10: Illustration of data used for gain/loss calculations. The gray line
is the probe-only spectrum. Pump-probe features from the full spectrum that
are above this line represent gain; features below the line represent loss.

the transmission spectrum is above this baseline, the probe beam has experi-

enced gain; below this line it has experienced loss. This is illustrated in Fig.

4.10, which shows a typical (non-optimized) data spectrum superposed on the

baseline probe absorption dip. I have normalized the probe transmission to the

measured transmission of the probe beam in the absence of the pump beam

with the probe laser detuned well outside the wings of the Doppler broadened

absorption line.

The x-axis, collected in uncalibrated units representing the frequency scan

of the diode laser, is converted to real frequency units as follows. First, I make

the assumption that the PZT motion moving the grating leads to a linear
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frequency scan of the laser. This turns out to be a very good approximation,

as the Burleigh PZTs are guaranteed linear to better than 4%. I then assign

462 MHz to the frequency between the one-photon Raman gain feature and

the Rayleigh scattering feature at the pump frequency, where the difference is

taken between the peak of the Raman gain and the point at which the central

slope of the Rayleigh scattering feature crosses the line of exactly 100% probe

transmission. This calibration sets the entire frequency scale. I neglect the

small amount of Stark shifting and level splitting seen at our operating Rabi

frequencies that would serve to modify the frequency scale.

4.6 Spectra versus probe power

At this point we are on the brink of some very exciting physics. The ex-

perimental parameters leading to the best one-photon Raman gain have been

optimized, and we are prepared to study the gain as a function of probe power.

As has probably become clear, pump-probe spectroscopy is relatively straight-

forward in terms of the necessary equipment (lasers, optical apparatus, and

such) and optical layout. The largest difficulty, and the part which requires a

great deal of patience, concerns the endless adjustment of the beam crossing

angles, intensities, and focus points in order to optimize the spectral features

of interest. This optimization has already been performed for one-photon Ra-

man gain. As the probe laser intensity increases, however, we expect to see the

appearance of two-photon Raman gain, and this two-photon process will serve

as the focus for the rest of our work.

In order to study the probe transmission spectrum as a function of probe

intensity, I took a series of data sets with differing amounts of attenuation in
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front of the cell. The Þlters serve to adjust the probe intensity without changing

any of the other experimental parameters. I did, however, continually check

that the insertion of the Þlters into the probe beam did not steer the beam

enough to make any noticeable change in the transmission spectrum due to

crossing angle modiÞcations � all changes resulted from power level differences.

In what follows, I specify the power in the probe beam rather than its intensity

since the effects of self-defocusing and defocusing of the probe beam by the

gradient index of refraction set up by the pump beam make it difficult to know

the exact spatial proÞle of the probe beam in the cell. This then makes a

calculation of the beam intensities rather uncertain, while I easily measure the

probe power incident upon the cell.

A typical low-probe-power data plot is taken with Þlters totalling an optical

density of 2.6 (transmittance 2.5×10−3) in front of the vapor cell, yielding an
incident probe power of 15µW. We observe large (>5000%) ampliÞcation of

the probe laser due to one-photon Raman scattering when ωp ≈ ωd − ∆hfs.
Even at these low powers, however, the gain is saturated � as I continue to

attenuate the probe beam the maximum one-photon ampliÞcation increases

rapidly. I have not yet reached the limit of one-photon ampliÞcation at the

weakest probe power levels, yet the sensitivity of our detection system prevents

me from going much below a probe power of 1µW, which gives an incredible

14,000% gain! At these large gains, the full width at half maximum of the

gain peak is very narrow, only a few MHz. As the laser power increases, the

one-photon Raman resonances decrease in peak height due to saturation and

increase in width due to power broadening. At a probe power of about 2 mW
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the width has increased to about 50 MHz8.

So far I have concentrated exclusively on the one-photon Raman resonances,

yet changes in the probe power affect a number of the other resonant features

as well. The peak of the Rabi feature appears to move to smaller probe-pump

detunings at higher probe laser powers. I do not have a good explanation for

this, as we would expect this feature to move to larger detuning at higher pump

intensities due to the correspondingly larger Stark shifts increasing the resonant

Rabi frequencies. Large probe powers/intensities can affect the atomic levels,

but again one would intuitively expect higher beam intensities to increase the

probe-pump detuning at which we observe resonance. This problem will be

further explored in the next chapter, where I explore a theoretical model of

our system. The Þnal important effect to note concerns the appearance of new

resonances as the probe intensity is increased high enough.

4.6.1 Demonstration of two-photon gain

Figure 4.11 shows a sequence of measured transmission spectra for several

different probe laser powers9, and Fig. 4.12 displays the same data over a

smaller detuning range. The spectral features described in Section 4.4 are the

only resonances that occur at low probe beam powers. As the laser power

increases, however, the main Raman resonance shows power broadening effects

and the gain proÞle exhibits the emergence of resonances at subharmonics of the

ground-state splitting. I attribute these intensity dependent spectral features

8Recall that working with small angles between the beams effectively eliminates the Doppler
contribution to the Raman linewidth. Residual width may derive from power broadening
(at high beam intensities) and frequency jitter between the two lasers.

9This series of spectra was actually taken after optimizing the two-photon gain, as described
in the next paragraph.
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to two- and three-photon gain. High probe powers (and correspondingly high

intensities) are essential to bring the nonlinear gain into operation because two-

(and three-) photon scattering has an intensity dependent cross-section.

Once the probe power is increased enough to observe two-photon gain, I

readjusted all of the experimental parameters in order to optimize the two-

photon gain feature. This is the point at which parameters originally set to

optimize one-photon Raman gain are adjusted to optimize two-photon Raman

gain. The sequence of measured transmission spectra displayed in Figs. 4.11

and 4.12 were taken by again swapping neutral density Þlters into the system

to vary the attenuation after I had already optimized the two-photon gain. I

need to emphasize the importance of patience for this optimization. In a span

of perhaps 15 minutes, initial tweaking can create conditions displaying 3-5%

two-photon gain. Increasing the gain beyond this point, however, can often

take hours. For this optimization, the crossing angle and the lenses setting the

pump and probe beam intensities are the most critical parameters. Moving

a focusing lens a centimeter toward or away from the cell or adjusting the

crossing angle by as little as 1 mrad can make a signiÞcant difference in the

observed gain.

The Raman gain shown in the spectra of Fig. 4.11 display all of the ex-

pected behaviors. Because two-photon gain is intensity dependent, the two-

photon ampliÞcation increases with increasing probe-beam power until satu-

ration occurs. On the other hand, the one-photon gain saturates quickly, so

high intensities actually reduce the ampliÞcation. This progression is evident

in Fig. 4.11a-c. As I approach probe powers of about 1.5 mW, the one-

photon Raman gain decreases dramatically and a new gain feature appears at
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ωR ≈ ωP − ∆hfs/2 = ωP − 231 MHz. I attribute this new feature to two-

photon Raman-based optical ampliÞcation because it occurs at the expected

frequency and it is not present for low probe-beam intensities, as expected

for the two-photon stimulated emission process. I should note that in or-

der to see the largest two-photon gain, I actually had to attenuate the probe

beam, and even when attenuated the intensity was large enough to saturate

the two-photon transition, as evidenced by the appearance of a small peak at

frequency ωR ≈ ωP −∆hfs/3 which I attribute to three-photon Raman ampliÞ-

cation (∼ 5% gain). Just as two-photon gain only appears once the one-photon
gain has been saturated, three-photon gain appears only after the two-photon

gain has been saturated. The three-photon gain peak disappears as the probe

intensity is lowered below the two-photon saturation intensity.

Our best results show ∼ 30% two-photon ampliÞcation of the probe beam

in a single pass through the cell, as shown in Fig. 4.13. As mentioned before,

this is two orders of magnitude higher than previously observed gain of ∼ 0.1%.
Thirty percent gain should be sufficient to observe two-photon lasing once we

put a cavity around the vapor cell, though of course higher gain would be even

better.

What might we be able to do in order to increase the observed gain beyond

the 30% I have already measured? I believe a limiting factor in the gain seen

involves the rate at which optical pumping can transfer atoms from the F=2

to F=1 potassium ground state. Raman gain transitions transfer atoms in the

opposite direction, from F=1 to F=2. At high gain rates where the Raman

transfer rate from F=1 to F=2 is quite fast, optical pumping may not be able to

maintain the necessary inversion, thus capping the maximum gain. Increasing
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the optical pumping rate (as described in Chapter 8) thus has potential for

increasing the two-photon gain beyond our best to date.

As a Þnal observation, I note that the two-photon Raman gain from 39K at

ωR ≈ ωP − 231 MHz and the one-photon Raman gain from the 41K isotope at

ωR ≈ ωP − 254 MHz are separated by only 23 MHz, yet are spectrally resolved
from each other. In the work with dressed-state two-photon lasers, the two-

photon gain was not even spectrally resolved from the one-photon gain caused

by the same isotope over 200 MHz away. The gain I observe is thus even more

impressive due to the excellent resolution of all of the spectral features, and in

particular the spectral isolation of the two-photon gain.

4.7 Four-wave mixing

Despite the impressive data shown above and the theory that will be described

in the next chapter substantiating our results, there are those who would claim

that we have not observed gain due to a pure two-photon stimulated emission

process, but rather see gain due to a parametric interaction such as four-wave

mixing (FWM). In 1981 a research group thought they had demonstrated two-

photon lasing [42], but it was later realized that the observed effect was due to

a parametric process. It has since become well recognized that gain seen as a

result of multi-photon parametric process can mimic true gain processes. Due

to this original case of mistaken identify, in two-photon gain and lasing experi-

ments it has become extremely important to prove that the gain is due to some

type of true two-photon stimulated emission and not due to wave-mixing or

other parametric processes. Because four-wave mixing requires phase match-

ing of the four beams involved, this can serve as a distinguishing characteristic
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Figure 4.14: Anti-Stokes Raman scattering

between FWM processes and pure gain processes that do not have such a

requirement.

A brief description of the relevant FWM process and its relationship to

anti-Stokes Raman scattering seems in order. Anti-Stokes Raman scattering is

shown in Fig. 4.14, where the scattered photon has a frequency higher than the

incident photon10 by the amount shown. Generally the anti-Stokes resonance,

which appears at a probe frequency blue detuned from the pump, will show loss

in our system because optical pumping has decreased the population of level c

such that it is much smaller than the population of level a. Yet there is a FWM

process that can demonstrate gain at the same frequency as the anti-Stokes

resonance, as shown in Fig. 4.15. An interaction between the pump wave at

10For simplicity, most of the following description deals explicity with the one-photon Raman
Stokes and anti-Stokes processes. All of the ideas, however, are equally applicable to two-
photon processes.
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Figure 4.15: The mechanics of four-wave mixing

frequency ωd and the Stokes wave
11 at frequency ωs (generated by the Raman

scattering process described earlier) initiates the FWM scattering process, so

signiÞcant Raman scattering must have already built up a strong wave at the

Stokes frequency before this FWM process takes place. The nonlinear response

of the medium to the pump and probe waves then generates a Þeld at the anti-

Stokes frequency ωas. In this four-photon parametric process which returns

11This is exactly the red-detuned frequency at which we have observed one-photon gain,
while in our system the anti-Stokes frequencies occur on the blue side of resonance at
positive probe-pump detunings.



119

the atom to its original state, two pump wave photons are annihilated, one

photon is added to the wave at the Stokes frequency, and one photon is added

to the wave at the anti-Stokes frequency. This actually creates the wave at the

anti-Stokes frequency, while that at the Stokes frequency is ampliÞed.

There have been a number of both theoretical and experimental studies

on four-wave parametric interactions resulting from the non-linear response

of a two-level atomic system [43]. If I adapt these treatments to the three-

level system at hand, it can be shown that optimum generation at the Raman

Stokes frequency requires a very large phase mismatch between the pump,

probe, and Raman generated waves. This effectively decouples the waves so

that the Stokes wave grows due to pure Raman scattering (non-phase matched),

while absorption is seen at the anti-Stokes frequency. This point deserves to

be emphasized: Raman Stokes scattering is a �pure� gain stimulated emission

process, and as such does not depend on the relative phase differences between

the pump and the probe Þelds.

However, anti-Stokes gain can occur and can in fact be quite large, but it

appears only as a result of Raman-resonant four-wave mixing, which becomes

signiÞcant only when the driving Þeld, Stokes Þeld, and anti-Stokes Þeld are

nearly phase-matched. Figure 4.16 diagrams the relationships between the

waves (a) when they are exactly phase matched and (b) when there exists a

measurable phase mismatch. In general optimal Stokes gain will not occur at

perfect phase matching [44], so we can conclude from these studies that we

should not expect FWM to occur when the Raman Stokes wave is optimized

(as it is in our experiment).

What do I actually see experimentally, and in particular what do I observe
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taking place at the anti-Stokes Raman frequency? Whereas in general anti-

Stokes Raman scattering shows absorption, at small angles when the pump,

probe, and output waves can become phase matched it may display gain. In

some cases, we observe anti-Stokes gain as large as 50% of the Stokes gain! In

addition, due to Stokes�anti-Stokes coupling as the anti-Stokes gain increases

gain at the Stokes frequency may increase as well. Any such increase is, how-

ever, by deÞnition not due to pure two-photon Raman scattering, and hence

represents a competing process we need to avoid.

Small crossing angles (where phase matching becomes possible) prove very

interesting in terms of the changes they produce in the probe transmission

spectrum. Strange background features appear and cause the observed scat-
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Figure 4.17: Probe transmission spectrum showing some effects of four-wave
mixing

tering features to be superposed on wavy nonuniform baseline, rather than

the steady, smooth baseline typically seen. A probe transmission spectrum

displaying some four-wave mixing effects is shown in Fig. 4.17. The change

from a smooth background to a wavy one is rather abrupt and hence easily ex-

perimentally identiÞable. It thus proves straightforward to avoid these regions

where the FWM processes become prevalent.

As well as displaying a crossing angle dependence, for a given crossing

angle I am able to identify experimentally different pump detunings that lead

to signiÞcant anti-Stokes gain. Changing the detuning parameter modiÞes

the phase of the waves, hence altering the phase mismatch. When the phase

mismatch is small enough as to give large anti-Stokes ampliÞcation, the four-



122

wave mixing and other competing effects that take place again severely alter the

probe transmission spectrum. If I then tune to larger phase mismatches, the

four-wave coupling decreases and decreases the anti-Stokes wave accordingly.

In many cases, at phase-matched crossing angles and detunings the features at

the two- and three-photon gain frequencies appear quite large12, which might

initially seem to be ideal. However, because their symmetric features on the

blue side of resonance (at the anti-Stokes frequencies) also display gain rather

than the loss that would be expected for non-phase-matched scattering, this

indicates that much of the ampliÞcation is due to FWM and not pure Raman

scattering. Again I steer away from regions of high FWM. At what we deemed

the optimal detuning and crossing angle (used for the data displayed in Fig.

4.13), the spectrum shows only minor gain at the anti-Stokes frequency due to

a FWM parametric process and it seems clear that the majority of the gain is

due to pure Raman scattering.

Although I make the claim that the majority of the two-photon gain seen

is pure Raman gain (and not a result of four-wave mixing), I have not yet

explicitly veriÞed this assertion. As the group progresses toward a two-photon

laser and places a cavity around our cell, two methods will allow us to dis-

tinguish Raman gain from parametric gain. Recall that the two-photon laser

exhibits novel threshold behavior in which the threshold depends on both the

population inversion and the photon number in the cavity. It displays a dis-

continuous Þrst-order phase transition at threshold, and this behavior has been

both predicted and experimentally veriÞed. A parametric oscillator, however,

even one based on high order processes, has threshold behavior basically iden-

12See, for example, the peak at the three-photon gain frequency (probe-pump detuning of
-154 MHz) in Fig. 4.17.
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tical to that of a normal laser. The transition to lasing is thus a continuous

second-order phase transition. Testing of the observed threshold in our sys-

tem will indicate the gain process upon which the lasing is based, and hence

differentiate between pure Raman gain and parametric gain.

In addition, any ampliÞed light at the anti-Stokes frequency will be emitted

at a non-zero angle with respect to both the pump and the probe beams in

order to phase-match the output. (Recall that phase-matching is not required

for typical Stokes gain, so light due to Stokes gain should be emitted in the same

direction as the pump beam.) If the laser cavity is arranged such that the anti-

Stokes wave cannot oscillate, perhaps through selective use of apertures in the

cavity, this will effectively eliminate all but the Raman oscillation. Any lasing

must then be due to a true Raman scattering process and not a parametric

process.

4.8 Experimental parameters

In order to complete the experimental description, it seems worthwhile to give

a careful accounting of the experimental parameters utilized in the realization

of 30% two-photon gain. Such a summary serves two purposes. Closely du-

plicating the successful experimental setup should prove useful in further work

for reproducing and then improving on the best gain seen to date. In addition,

the next chapter involves a semiclassical theory of a driven three-level atom

which models our experiment. Although the theory is not yet well-developed

enough for an exact quantitative comparison between theory and experiment,

a qualitative comparison still beneÞts from setting parameters such that they

correspond with experimental values.
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The most important experimental parameters over which we have signiÞ-

cant control, and hence those I describe in what follows, are the beam intensi-

ties, crossing angles, probe-pump detuning, and cell temperature. The atomic

decay rates, broadening mechanisms, and dipole matrix elements are set by the

atom we work with � 39K. Although any theory requires accurate estimates

of these quantities, we have little experimental control over them. For this

reason, I defer a discussion of these atom-speciÞc variables to the next chapter.

4.8.1 The pump detuning

An initial estimate for the pump detuning from resonance of ∼ 1 − 2 GHz
comes directly from examining the experimental spectra and estimating the

frequency spacing between the line-center probe absorption dip and the pump

frequency as taken from the Rayleigh scattering feature. However, I work in a

regime where the transition is highly saturated and the wings of the absorption

dip are separated by over 2 GHz. In addition, the diode laser in its current

conÞguration has a Þnite frequency scan of only ∼ 2 GHz before mode hopping.
It thus proves impossible to view both the scattering resonances and the entire

absorption dip using a single diode laser frequency scan. This leads to a rather

large uncertainty in the initial detuning estimate. I reÞne the estimate using

computer code written for the theory described in Chapter 5 in order to match

the shape and position of the measured weak-Þeld absorption dip to the dip that

is calculated at various pump detunings. Theoretical results must account for

both Doppler broadening and weak-Þeld propagation effects. My Þnal estimate

of the pump detuning is −1440 MHz.
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4.8.2 Temperature

The cell temperature is carefully monitored and maintained within the heat

pipe. Radiative heat loss is minimized using Þberglass insulation, and air

currents that might cause convective heat loss or heat ßuctuations are also

minimized. Thermocouples are attached directly to the cell in order to get an

accurate temperature measurement, and we maintain the cell temperature at

150◦C.

4.8.3 Crossing Angle

The experimental crossing angle at which the best two-photon gain is observed

is known from the measured separation between the pump and probe beams

at some distance from their crossing point. The centers of the pump and

probe beams were 1.2 cm apart a distance 1 m from the cell, giving a crossing

angle of 12 mrad. I experimented with both smaller and larger crossing angles,

covering the range between about 4 and 20 mrad. Four-wave mixing effects

show distinctive destructive effects on the two-photon gain for angles smaller

than about 6 mrad. At larger crossing angles the pump-probe interactions

decrease simply because the pump-probe overlap signiÞcantly decreases. As

stated earlier, the best balance of experimental parameters occurred at the

crossing angle of 12 mrad.

4.8.4 Beam Intensities

The power P incident on the cell in our pump beam is measured to be 920

mW, and the unattenuated probe power entering the cell is 6.9 mW. From

these powers I want to calculate the predicted beam intensities, and easy task
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once the beam spot sizes are known. I use a 10 µm pinhole mounted on an

xyz translation stage to map out the spatial proÞle of the focused beams at

the beam waists wo, which are centered in the cell during an experimental

run. Fitting the beam proÞle to a Gaussian determines the spot size at the

beam waist as the distance from the beam center such that the beam intensity

decreases to 1/e its maximum value. We Þnd wpumpo = 64 µm and wprobeo = 28

µm, and calculate the pump and (unattenuated) probe beam intensities using

I = P/πw2o to be 7.0 kW/cm
2 and 285 W/cm2, respectively. (For readers more

familiar with beam sizes quoted in terms of the intensity full width at half

maximum, the pump beam intensity FWHM is about 150 µm, while the probe

beam intensity FWHM is about 65 µm.) These predicted beam intensities,

however, could be as much as a factor of 2, 4, or more too large due to self-

defocusing effects occurring in the cell with unpredictable effects.



Chapter 5

Semiclassical Theory of a Driven
Three-Level Atom

A very basic understanding of two-photon Raman scattering, such as that de-

scribed in the last chapter, is all that is needed to realize its potential as a

two-photon gain mechanism. I took this understanding into the lab and per-

formed an experiment which demonstrated two-photon gain more than two

orders of magnitude higher than the best previous results. Now I would like to

theoretically delve a bit deeper into Raman scattering and the other interac-

tions taking place in our experimental gain medium. A theory should help us

to identify the important effects taking place in the cell and comprehend the

relationships between the numerous experimental parameters. In addition, we

hope it should provide us with at least minimal predictive capabilities.

5.1 Introduction

It is well known that the interaction of a strong electromagnetic wave with

an atomic medium can affect the populations of the atomic states as well as

modify the atomic eigenstates, leading to level shifting [45] and splitting [46].

127
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When two waves couple with the atomic system, nonlinear effects such as

Raman and multi-photon processes may occur. Absorption, saturation, and

optical pumping also affect the light-matter interaction. An accurate theory of

a driven atomic medium needs to account for all of these phenomena, which is

not necessarily an easy task. In addition the energy level structure of an atomic

electron can involve numerous levels, further complicating any complete theory.

There are a few general theoretical approaches for dealing with the inter-

action between light and matter, especially when dealing with laser behavior.

One of the simplest approaches uses rate equations, such as those that will be

described in Chapter 7. Rate equations are simple and intuitive, which is why

we use them to gain an understanding of the steady-state behavior and sta-

bility properties of a two-photon laser. However, they are incomplete in that

they do not deal with atomic coherences, which can play a critical role in the

eventual laser behavior. In addition, they do not consider propagation effects

such as the spatial evolution of the light-Þeld intensity within the nonlinear

gain medium. A second approach to light-matter interactions uses Schrödinger

amplitudes of motion, derived from Schrödinger�s equation and the wave equa-

tion, to describe laser dynamics. However, a formalism based upon the atomic

wave function has no good way of incorporating atomic decay or collisional

(dephasing) effects, limiting the usefulness of such an approach. Perturbation

theory, a third common theoretical approach, is not adequate when dealing

with more than one strong Þeld.

This chapter presents a semiclassical theory of a driven three-level atom

based on density matrix equations of motion. The semiclassical density-matrix

equations of motion explicitly consider atomic level populations and the evo-
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lution of the atomic dipoles, and effectively account for all of the nonlinear

phenomena described above. In addition, this formalism is capable of treating

collisional and other broadening effects, and can be applied to both strong and

weak electromagnetic Þelds. Knowledge of the density matrix elements allows

one to derive the physical parameters describing the behavior of an atomic sys-

tem in an optical Þeld, and is useful for predicting experimental observations.

Most importantly for our purposes, it is possible to express the atomic ab-

sorptive response in terms of the amplitude of the off-diagonal density matrix

elements. We intend to use this theory to qualitatively, and perhaps quantita-

tively, describe our experimental results of the probe gain spectra after passing

through a driven atomic vapor.

5.1.1 Comparison of our model with previous theories

The density matrix formalism has long been used to describe the theory of in-

teraction of a single Þeld in a system of two- or three-level atoms [47]. Within

the past decade, the interaction of two strong Þelds in a system of two-level

atoms was considered [41], and there have been a number of studies consid-

ering two strong Þelds in a system of three-level atoms. However, previous

studies generally only allowed one laser Þeld to interact on any given transi-

tion, as indicated in Fig. 5.1a, failing to consider that each laser beam may

be coupled to both transitions with non-zero dipole matrix elements. Many

higher-order effects, including two-photon Raman gain, can only be explained

by considering this more general coupling interaction. This became explicitly

evident in a 1991 study [48] examining a three-level, two-beam system that

only allowed the beams to interact on a single transition. It predicted only
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Figure 5.1: Representation of a three-level atom interacting with two incident
Þelds. (a) The Þeld at frequency ωd interacts only on the a ↔ b transition,
while the Þeld at frequency ωp interacts only on the c↔ b transition. (b) Both
Þelds interact on both atomic transitions.

the odd subharmonic Raman resonances (one-photon, three-photon, etc.), and

hence could not explain the two-photon resonances we wish to study.

I consider the interaction of two strong Þelds with a three-level atom and

allow both input beams to be strong and nearly resonant with all electronic

transitions, as indicated in Fig. 5.1b. This adds a fair amount of complexity

to the system, and is one way in which this system differs from most previous

three-level, two-beam systems. To my knowledge, only one previous group [49]

considered a two-beam, three-level system where each input beam can be strong
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and resonant with numerous transitions simultaneously. They worked with

pulsed lasers, and hence were interested only in the short-time atomic response.

This allowed a direct numerical integration of the density-matrix equations of

motion over the time scale of interest. In our system using continuous-wave

lasers, I study the long-term and average atomic response, making a direct

numerical integration prohibitively time-consuming.

In a two-beam pump-probe saturation spectroscopy experiment such as the

one I performed, one typically determines how the response of the medium to

the probe wave is altered by the presence of the pump wave. The character of

the nonlinear processes is profoundly modiÞed when the intensity of the pump

laser is increased to the extent that perturbation theory is not sufficient to

describe the interaction. At this point, effects associated with the breakdown

of perturbation theory, such as spectral line broadening and Stark shifting, can

be quite pronounced and signiÞcantly alter the dynamics of the system. The

majority of previous theories are valid only in the perturbation theory limit.

Even approaches which take perturbation theory out to extremely high order

[50] run into difficulties when dealing with large laser intensities. I work at

high enough intensities that the theory is forced to go beyond the perturbation

theory limit and account for these new effects.

A Þnal difference between this model and many previous models is the com-

mon assumption of negligible population transfer between the atomic levels.

This simpliÞcation would lead to signiÞcant errors in the theoretical predic-

tions, as our Þelds are strong enough to populate the excited state even when

far detuned from resonance. Not only must I account for changes to the ex-

cited state populations, but population transfer via optical pumping between
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the two lower levels also plays a vital role in our experimental system and must

be included in the theory.

5.1.2 Usefulness of the theory

Before exploring the details of my theoretical approach to the pump-probe in-

teractions in the potassium cell, I will jump ahead and state that the theory

successfully reproduces the important features in our experimental spectra.

This is quite exciting, and validates the theoretical approach. I should note,

however, that the theory is limited. It does not include the polarization prop-

erties of the laser beams or the full magnetic hyperÞne structure in the ground

and excited states. In addition, the theory fails to account for any spatial vari-

ations in the pump or probe beams, or propagation effects as the beams pass

through the atomic medium.

Despite these potential difficulties, it seems reasonable to hope that the

theory can predict the expected spectral shape and approximate gain due to

various scattering processes given the proper experimental parameters. This

would allow optimal laser Rabi frequencies and detunings to be numerically

determined. Taking things a step further, perhaps the effectiveness of other

alkali metals, such as lithium, sodium, or rubidium, in generating high two-

photon gain could be theoretically tested. These elements all have unique

ground-state splittings, decay rates, and matrix elements, and an alkali other

than potassium could prove far superior for our purposes. Yet it is signiÞcantly

faster, cheaper, and easier to examine the properties of new elements using

computer code than by building or buying new lasers to probe their resonances.



133

5.2 Application of the density matrix to spec-

troscopy experiments

A review of the origin of the density matrix equations was previously given in

Sec. 2.1.1. The rest of this chapter formulates a description of the interaction

of optical Þelds with a nonlinear medium through use of the density matrix

equations of motion. Why might this be useful? The density matrix equations

generally describe a single-atom treatment of quantum optical interactions. In

the most complete approach to the problem, from a solution of the density

matrix we calculate the single-atom susceptibility of the medium, and hence

the microscopic atomic polarization. When applied to a speciÞc atomic system

(with a speciÞc number density, for example), this yields knowledge of the total

atomic polarization. The polarization then acts as a source term in the macro-

scopic wave equation and Maxwell�s equations, from which we can calculate

the propagation effects of the incident Þeld (or Þelds) through the medium1.

A self-consistent calculation of this sort yields a complete, time-dependent de-

scription of the light-matter interactions taking place in our system.

Although an eventual goal of the theory includes incorporation of these

propagation effects, such a calculation is beyond the scope of this thesis. This

theory looks at a simpler problem in which I extract the single-atom absorp-

tive response of the medium (calculated at its input face) from the density

matrix solutions for the coherences. A plot of the absorptive response as a

function of the probe-pump detuning should then correctly identify the fre-

quencies at which to expect a nontrivial spectral response of the medium.

1Propagation effects account for attenuation (or ampliÞcation) of the incident Þelds as they
pass through the medium. They also consider the creation of new Þelds which can then
interact in the medium, for example.
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Because I experimentally measure spectral responses (as described in Chapter

4), this calculation proves directly relevant to a comparison between theory

and experiment.

The absorptive response of the atomic system at the probe beam frequency

ωba is given by [51]

αba =
2 Im(σba)

Ωba/Γba
, (5.1)

while the response at the probe beam frequency ωbc is given by

αbc =
2 Im(σbc)

Ωbc/Γbc
. (5.2)

In Eqs. 5.1 and 5.2, σij represents the slowly varying coherence related to

the density matrix coherence ρij. In both cases the response has been made

unitless by normalizing with respect to the appropriate Rabi frequency Ωij ,

which has in turn been normalized to the atomic dephasing rate Γij of the

transition. The total absorptive response for our three-level atomic system is

given by the sum of αba and αbc.

Due to limitations in the theory, most notably ignoring the many magnetic

sublevels in the atom and ignoring the propagation effects mentioned above,

the calculated atomic response cannot be exactly compared with the experi-

mentally measured transmission of the probe beam after passing through the

atomic cell. It can, however, give an accurate qualitative picture of the in-

teractions taking place in the system. The calculated spectral frequencies at

which interaction features appear, for example, should be accurately known,

though the exact peak heights and widths cannot be reliably determined. A

direct comparison between theory and experiment does requires Doppler aver-

aging the absorptive response over the atomic velocities in the medium. This
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is further explored in Sec. 5.4.3.

To summarize, given the density matrix equations of motion our task is to

numerically evaluate the density matrix coherences, and from them evaluate

the Doppler averaged absorptive response of the probe beam as a function of the

probe-pump detuning. I then compare the results with experimental data by

plotting the theoretical probe absorption coefficient as a function of the detun-

ing. As described in the remainder of this chapter, I Þnd the calculated probe

transmission spectra from the three-level theory to be qualitatively similar to

the experimentally observed spectra. An eventual goal is to use the theory

for predicting parameter values which should optimize the spectral features of

interest, such as two-photon gain.

5.3 Three-level atom equations of motions

I begin a study of the density matrix equations of motion for a three-level atom

interacting with two strong Þelds by starting with the equations of motion for

a single strong Þeld interacting with both atomic levels, as previously shown in

Fig. 5.1a. I start here for two reasons. First, it is possible to solve this problem

analytically, so it acts as a Þrst step toward solving the more complicated

problem which involves two Þelds. Additionally, the treatment of a single Þeld

interacting with both levels of a three-level atom models the optical pumping

process occurring in our system, from which we can watch the expected change

in atomic level populations due to this pumping.

I treat the driving Þeld as a monochromatic plane wave

Ed(r, t) = Ed(r, t)e−iωdt + c.c. , (5.3)
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where ωd deÞnes the frequency of the incident driving Þeld. Using the con-

vention that detunings are positive when the Þelds are tuned to the blue

side of resonance, I write the pump Þeld detunings as ∆ba = ωd − ωba and
∆bc = ωd − ωbc = ∆ba − ∆g, where ∆g ≡ ωca is the ground state splitting.

Recall that the only non-zero dipole matrix elements are µba and µbc. The

driving Þeld Rabi frequencies, which measure how effectively the laser stimu-

lates transitions in an atom, are then identiÞed as

Ωba =
2µba · Ed(r, t)

~
(5.4)

and

Ωbc =
2µbc · Ed(r, t)

~
. (5.5)

As I did in Sec. 2.1.1, I deÞne slowly varying coherences (speciÞed by σij

rather than ρij) such that

ρba = σbae
−iωdt (5.6)

and

ρbc = σbce
−iωdt . (5.7)

The coherence ρca already represents a slowly varying quantity, as it oscil-

lates with a frequency close to ωca which is much less that the typical optical

frequency. For this reason, I simply rename ρca = σca. The rotating wave ap-

proximation now keeps only resonant terms and effectively factors out terms

which oscillate at optical frequencies, signiÞcantly simplifying the problem.

With all of these substitutions and deÞnitions for a three-level system, Eqs.

2.7 and 2.8 are used to write the equations for the slowly varying coherences

and populations,
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∂σba
∂t

= (i∆ba − Γba)σba + i

2
(Ωbaσaa + Ωbcσca − Ωbaσbb) , (5.8)

∂σbc
∂t

= (i∆bc − Γbc)σbc + i

2
(Ωbaσac + Ωbcσcc − Ωbcσbb) , (5.9)

∂σca
∂t

= (−i∆g − Γca)σca + i

2
(Ωcbσba − Ωbaσcb) , (5.10)

∂σaa
∂t

= (γbaσbb + γcaσcc − γacσaa) + i

2
(Ωabσba −Ωbaσab) , (5.11)

∂σcc
∂t

= (γbcσbb − γcaσcc + γacσaa) + i

2
(Ωcbσbc −Ωbcσcb) , (5.12)

and

∂σbb
∂t

= −(γba + γbc)σbb + i

2
(Ωbaσab + Ωbcσcb −Ωabσba − Ωcbσbc) . (5.13)

Conservation of population within the system,

σaa + σbb + σcc = 1 , (5.14)

can be used to eliminate the σbb equation. Equations for the coherences ∂σab/∂t,

∂σcb/∂t, and ∂σac/∂t are found as the complex conjugates of the Þrst three

equations. The above equations serve as a basis from which to study both the

shifting of energy levels due to a strong pump Þeld and explore the populations

of the atomic levels as a function of the pump intensity.

5.3.1 Optical Stark Effect

When the wavelength of a laser is scanned across an atomic transition, the

phase and amplitude of the transmitted light change because both the refractive

index and the absorption coefficient of the atom are functions of frequency. If

the laser is resonant or near resonant with the transition, two other effects

come into play � the AC Stark effect and Rabi oscillations. Application of a
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strong Þeld to a gas of three-level atoms cause the ground state populations

to move about, resulting in an oscillation of the population inversion between

the ground and excited states at a characteristic frequency equal to the Rabi

frequency; these population oscillations are called Rabi oscillations. A strong

laser Þeld also modiÞes the energy-level structure of the atom, splitting and

shifting energy levels and resulting in qualitatively new atomic resonances. The

splitting is analogous to the familiar DC Stark effect in which atomic energy

levels are shifted by a constant electric Þeld. In the AC Stark effect, sometimes

known as the Autler-Townes splitting [46], the energy levels are split by the

oscillating electric Þeld of the laser beam.

In a three-level atom each energy level will be split into a triplet of levels.

This is most easily understood in the dressed-atom basis, but I do not intend

to delve into any details concerning dressed states here, both because they

have been extensively discussed in a number papers and textbooks [52] and

because a complete discussion goes beyond the realm of this thesis. Rather

than calculating the level splittings in the dressed-state basis, we remain in the

bare-atom basis and use the density matrix equations of motion to describe

this system. Level splittings create qualitatively new resonances in a probe

absorption or ßuorescence spectrum due to the new resonant frequencies they

introduce. To monitor these changes, I allow a single strong laser to interact

between both optical transitions in the system while a weaker probe laser

couples a single system level to a fourth level outside of the system. When the

strong laser is switched on, the system level coupled by the probe laser will be

split into three sub-levels, causing the familiar absorption curve (like that of

Fig. 4.2) to now display three separate dips.
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Figure 5.2: Use of a probe Þeld to study level-shifting effects due to a strong
driving Þeld (frequency ωd)

More explicitly, in order to examine the splitting and shifting of level a,

for example2, I consider a three-level atom pumped by a strong Þeld on both

the b → a and b → c transitions. A weak probe between state a and another

state in the system f examines how the level a shifts relative to f, as shown in

Fig. 5.2. The weak probe should examine the system without affecting either

the population distribution or the level shifts caused by the strong driving

Þeld. I also assume that the weak Þeld will not signiÞcantly populate level

f , so ρff ≈ 0. Since the populations in our system remain unchanged (they

are described by Eqs. 5.11 � 5.14), the only new system dynamics involve the

coherences to the new state: ρfa, ρfb, and ρfc.

Applying the general density matrix equation of motion, Eq. 2.8, to a

2An exactly analogous process with probing Þelds between levels b↔ f or c↔ f are used
to look at the shifts in these levels. For brevity�s sake, I only describe the mathematics
for level a.
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system with a weak probe between level f and level a gives

∂ρfa
∂t

= (−iωfa − Γfa)ρfa + i

~
(µfaρaa −µbaρfb) ·E(r, t) , (5.15)

∂ρfb
∂t

= (−iωfb − Γfb)ρfb + i

~
(µfaρab −µabρfa −µcbρfc) · E(r, t),(5.16)

and

∂ρfc
∂t

= (−iωfc − Γfc)ρfc + i

~
(µfaρac −µbcρfb) · E(r, t) . (5.17)

I write these coherences in terms of slowly varying quantities by applying the

usual rotating wave approximation transformations in which I factor out the

optical frequency time dependences (as described by Eqs. 5.6 and 5.7), with

the addition of the equations

ρfa = σfae
−iωf t , ρfc = σfce

−iωf t , (5.18)

and

ρfb = σfbe
−i(ωf−ωd)t . (5.19)

I then deÞne the detuning ∆fa = ωf − ωfa and arrive at the equations

∂σfa
∂t

= (i∆fa − Γfa)σfa + i

2
(Ωfaσaa − Ωbaσfb) , (5.20)

∂σfb
∂t

= [i(∆fa −∆ba)− Γba]σfb + i

2
(Ωfaσab −Ωabσfa − Ωcbσfc),(5.21)

and

∂σfc
∂t

= [i(∆fa +∆g)− Γca]σfc + i

2
(Ωfaσac − Ωbcσfb) . (5.22)

In steady-state this system reduces to a set of simultaneous algebraic equa-

tions from which I easily solve for the coherence of interest, in this case σfa

since we are probing the f → a transition. For notational compactness we
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deÞne the quantities

D1 = 2 [(∆fa +∆g) + iΓca] , (5.23)

D2 = 2 [(∆fa −∆ba) + iΓba] , (5.24)

and

D3 = (∆fa + iΓfa) . (5.25)

With a little bit of algebra (which of course is left to the careful reader) the

σfa coherence can then be written

σfa =

Ã
D1D2− | Ωbc |2

D3(D1D2− | Ωbc |2)−D1 | Ωba |2
!
× (5.26)"

σaa +
D1Ωba

D1D2− | Ωba |2
µ
σab +

Ωcb
D1
σac

¶#
.

As described in Sec. 5.2 the absorptive response of the probe beam, αfa, is

then

αfa = 2 Im

Ã
σfa

Ωfa/Γfa

!
. (5.27)

Because features in the absorption spectrum result from transitions between

atomic states, level splittings and shiftings which can qualitatively change both

the number and positioning of atomic levels then also change the absorption

spectrum. In order to examine level-splitting effects I use a simple peak-Þnding

routine to extract the features (peaks and dips) in the spectrum described

by the absorptive response. Tracking the frequencies at which these features

appear as a function of the pump Rabi frequency then maps out the atomic

level structure.

I mapped the level shifts for all three states in the system, as shown in Fig.

5.3. In the calculations, I set the potassium ground-state splitting to ∆g =

460 MHz and the detuning of the pumping beam from the b ↔ a resonance
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Figure 5.3: Splitting and shifting of atomic energy levels due to interaction
with a strong electromagnetic Þeld
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to ∆ba = −1440 MHz. Other parameters (listed in the Þgure caption) well
describe the experimental system.

The splittings are shown as a function of the strength of the pump beam

Rabi frequency. As expected, each level becomes a triplet of levels, and the

frequency splittings at zero Rabi frequency are directly related to the detuning

and ground state splittings. The levels that begin at a zero frequency split-

ting are the natural levels of the system (i.e., those that exist in the atom

when it is not interacting with a light Þeld). Note that the splittings for each

level are quite similar � the only real difference is in where the new levels are

created relative to the natural atomic levels. As the pumping Rabi frequency

increases, the splittings increase and the levels tend to repel each other, leading

to spectral resonances at larger detunings. The most important new resonances

caused by the level splittings in terms of the observed spectral features are the

Rabi resonances. As described in Chapter 4, these resonances correspond to

simultaneous absorption of two pump laser photons and emission of a probe

laser photon in making a transition to the excited state.

Of special interest to us is the change in the splitting between the Raman

transition levels c and a. The spectral position of all Raman features is critically

dependent on this splitting, which in a bare potassium atom is equal to the

hyperÞne splitting ∆g. Although both the c and a levels are affected by the

dynamic Stark shift (as is clearly shown in Fig. 5.3), Fig. 5.4 illustrates that

their difference stays relatively constant until the Rabi frequencies exceed about

860 MHz. Experimentally, I believe the largest pump Rabi frequencies to be

∼ 750 MHz which, though large, should not cause signiÞcant spectral changes
of the Raman peaks due to level shifts. This is an important conclusion which
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Figure 5.4: Change in the splitting between levels c and a as a function of
pump Rabi frequency. Parameter values model the potassium atom, where the
ground-state splitting is taken to be 450 MHz. The pump detuning is taken to
be -1440 MHz.

affects both the theoretical and experimental frequency calibrations.

In addition to exploring the Stark shifted levels, I also solved Eqs. 5.11 �

5.14 for the level populations as a function of the pump Rabi frequency. This

allows a determination of the frequency at which signiÞcant population redis-

tribution begins to take place in the system. As shown in Fig. 5.8, there is

a population inversion between levels a and c at low Rabi frequencies. This

is exactly what we want and need in order to see gain on the one-photon and

two-photon a → c Raman transitions. It is interesting to note, however, that

at pump Rabi frequencies above about 830 MHz, population redistribution

reverses the inversion: now level c is more populated than level a. This re-

distribution becomes noticeable when the pump Rabi frequency is more than
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Figure 5.5: Level populations as a function of pump Rabi frequency

about twice the atomic ground-state splitting. At these high frequencies, the

pump Þeld interacts with both levels in a fairly equal manner, as the splitting

no longer seems signiÞcant. This causes the optical pumping cycle to break

down because the level populations are now set more by the decay branching

ratio of the excited state (which tends to populate level c) than the pump Þeld

absorption rate (which previously depopulated level c).

5.4 ModiÞcations for a second Þeld

To the system involving a single electromagnetic Þeld describe in Sec. 5.3, I

now want to add a second (probe) Þeld,

Ep(r, t) = Ep(r,t)e−iωpt + c.c. . (5.28)
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This situation was modelled in Fig. 5.1b. With the addition of the probe Þeld

at a frequency ωp, the theoretical system now mimics our two-beam probe-

pump spectroscopy experiment.

How will the addition of a second Þeld affect our equations? It turns out

that the driving Þeld and the probe Þeld beat with each other and lead to

harmonic modulations of the atomic populations and coherences. This can be

modelled by performing the substitutions

Ωba → (Ωba)d + (Ωba)pe
−i∆pt (5.29)

and

Ωbc → (Ωbc)d + (Ωbc)pe
−i∆pt , (5.30)

in Eqs. 5.8 � 5.13, where I have introduced the probe-pump detuning ∆p =

ωp−ωd and I explicitly identify the pump and probe Rabi frequencies for each
transition.

With the addition of the second Þeld, an exact solution for the popula-

tions and coherences cannot easily be found. The nonlinear response of the

atomic medium to the applied Þelds introduces all possible harmonics of the

pump/probe beat frequency. If the probe Þeld is weak, and hence has only

a weakly nonlinear response, only the Þrst few harmonics are important and

perturbation theory well describes the interaction. If, however, both beams

are taken strong enough to saturate the optical transitions (as they are in our

experiment), in theory all of the harmonics become important to accurately

model the interaction. To deal with these difficulties, I decompose the popu-

lations and coherences into a Fourier sum with the ansatz

σij =
X
n

(σij)ne
−in∆pt (5.31)
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for i > j (i.e., i is a higher atomic energy level than j) and

σij =
X
n

(σij)ne
+in∆pt (5.32)

for i < j. My strategy involves Þnding a solution correct to all orders in the

pump Þeld and any chosen order in the probe Þeld, then only requiring the

retention of a Þnite number of terms in this sum.

Assuming constant coefficients (σij)n since I am interested in the steady-

state response, I rewrite the system of equations (given by Eqs. 5.8 � 5.14) in

terms of the Fourier sums. Equating Fourier coefficients then yields recursion

relations for the coherences,

[Γba − i(∆ba + n∆p)](σba)n =
i

2
[(Ωba)d(σaa)n + (Ωba)p(σaa)n−1 (5.33)

+(Ωbc)d(σca)n + (Ωbc)p(σca)n−1

−(Ωba)d(σbb)n − (Ωba)p(σbb)n−1] ,

[Γbc − i(∆bc + n∆p)](σbc)n =
i

2
[(Ωba)d(σac)−n + (Ωba)p(σac)−n+1 (5.34)

+(Ωbc)d(σcc)n + (Ωbc)p(σcc)n−1

−(Ωbc)d(σbb)n − (Ωbc)p(σbb)n−1] ,

[i(∆g − n∆p)](σca)n =
i

2
[(Ωcb)d(σba)n + (Ωcb)p(σba)n+1 (5.35)

−(Ωba)d(σcb)−n − (Ωba)p(σcb)−n+1] ,

−in∆p(σaa)n =
i

2
[(Ωab)d(σba)n + (Ωab)p(σba)n+1 (5.36)

−(Ωba)d(σab)−n − (Ωba)p(σab)−n+1]

+γba(σbb)n , (5.37)

and

−in∆p(σcc)n = γbc(σbb)n +
i

2
[(Ωcb)d(σbc)n + (Ωcb)p(σbc)n+1 (5.38)
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−(Ωbc)d(σcb)−n − (Ωbc)p(σcb)−n+1] .

The conservation of population equation becomes

(σaa)n=0 + (σbb)n=0 + (σcc)n=0 = 1 . (5.39)

The conjugate coherence equations can be found from Eqs. 5.33 � 5.35 by

making the substitutions

i → −i , (5.40)

Ωlm → Ωml , (5.41)

(σlm)n → (σml)n , (5.42)

and

(σll)
∗
n → (σll)−n . (5.43)

The last equation follows because the populations are real.

5.4.1 Computational issues

In order to Þnd the populations and coherences for this three-level atomic

system interacting on both relevant transitions with two electromagnetic Þelds,

I numerically solve the system of equations for the time-dependent diagonal

and off-diagonal density matrix elements. Although the system is technically

in the form of an inÞnite matrix, and hence of inÞnite order, generally fewer

than the Þrst 15 terms are needed to accurately describe the behavior.

If I look at the system of equations in terms of its Fourier components,

each order effect needs to be calculated from the component of the induced

polarization at the proper frequency. Note from Eqs. 5.31 and 5.32 that if

only the n = 0 term in the sum is kept, this corresponds to an exact solution
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for the driving Þeld with no applied probe Þeld as described by Eqs. 5.8 �

5.14. Introducing the n = ±1 terms represents the probe Þeld acting to lowest
order, with a frequency response at the pump-probe detuning ∆p. The n = 0

and n = ±1 terms dominate for a strong pump and weak probe beam; this
represents the perturbation theory limit. Higher order pump-probe effects

correspond to higher terms in the sum, which generally become important as

the probe beam intensity is increased. In order to predict second order effects

like two-photon gain I must include at least one additional term in both the

pump and the probe Þelds, though saturation of the two-photon gain requires

many (≥ 5) higher-order terms. Third (and higher) order effects require the

inclusion of even more terms in each Þeld. At a bare minimum, I keep terms to

at least one order higher than the effect we are interested in studying, so, for

example, I will calculate to at least third order when looking a two-photon gain.

A check for consistency and convergence involves insuring that the numerical

results do not change signiÞcantly with the addition of more terms. Most of

the calculations retained 7 terms.

The size of the matrix system I need to solve scales as the square of the

number of terms kept in the calculation. The solitary n = 0 term creates a

9 × 9 matrix from the original nine equations and nine unknowns. Including

the n = +1 term increases the number of equations to 18, thus yielding an

18× 18 matrix. Because computations scale as a high power of the dimension
of the matrix, solving the matrix system can quickly become unmanageable

in terms of the computation time involved. However, I can exploit some of

the symmetry and term relationships of the problem in order to decrease the

number of calculations that need to be completed. A direct inspection of
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the equations shows that any given Fourier coefficient (σlm)n is written only

in terms of other coefficients with Fourier index ±n and ±n ± 1. When the
recursion relations are written in matrix form, the matrix is sparsely populated

and nearly block diagonal. As more terms in the sum are retained and the

matrix grows in size, exploiting the sparsity of the total matrix becomes even

more important.

With this in mind, it proves most efficient to use a sparse-matrix solv-

ing package which implements standard mathematical techniques to quickly

reduce and solve our matrix equations. I use Sparse 1.3: A Sparse Linear

Equation Solver [53] that uses routines capable of solving large systems of lin-

ear equations, handling both real and complex matrices, performing matrix

initialization, exploiting sparsity to reduce unnecessary computation, and per-

forming all arithmetic operations and numerical storage using double precision

for more accurate results.

I wrote a C++ program (with the help of William J. Brown) which deÞnes

the experimental parameters and sets up the matrix system for the given num-

ber of terms we wish to include in the calculations. Once the system has been

created, it calls Sparse 1.3 to initialize the matrix, solve for the coherences, and

calculate the absorptive response. In order to properly mimic the experimental

data, the program is designed to calculate the theoretical spectra as a function

of the detuning frequency, where the pump frequency is Þxed while the probe

frequency scans across the hyperÞne resonances. Though Sparse 1.3 is one of

the fastest packages on the market, the routine requires about 0.1 seconds of

computing time (on a PC with a 90 MHz Pentium processor) to solve the ma-

trix equations at each value of the probe-pump detuning when terms out to
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n = ±5 are kept .

5.4.2 General spectral features

What sort of spectra do the calculations and computations predict? A repre-

sentative output spectrum is shown in Fig. 5.6, where part (a) includes the

entire range of probe-pump detunings explored experimentally, and part (b)

focuses on a smaller range in order to more easily label a few features for iden-

tiÞcation purposes. The parameter values used to calculate this spectrum are

shown in the Þgure caption and are further discussed in Sec.5.5.

Although the origin of the labelled features has already been discussed in

Chapter 4, I brießy recap here the multiphoton processes resulting in these

resonances. The dispersive peak at the pump frequency (peak a) is due to

Rayleigh scattering. Rayleigh scattering involves a pump photon and a probe

photon of approximately the same frequency and returns the atom to its initial

state. Peak b, centered at the ∆g = 450 MHz frequency equal to the c →
a splitting input into the program, is due to saturated one-photon Raman

scattering. Two-photon Raman scattering, which occurs at a frequency equal

to one-half of the c→ a splitting (225 MHz) accounts for peak c. Though not

shown here, the theory also reproduces the resonant absorption dip, which is

off-scale to the right in Fig. 5.6.

The general appearance of the spectral features looks a bit different from the

data presented in the last chapter. In particular, experimentally we used the

narrowness of the Raman features with respect to other scattering features as a

means of identiÞcation. Yet in the theoretical spectra shown there are a number

of features narrower than the Raman ones, especially since the one-photon
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Figure 5.6: Typical output spectrum of our theoretical calculations. The
parameter values used in this plot are: (Ωba)d = (Ωbc)d = 625 MHz;
(Ωba)p = (Ωbc)p = 130 MHz; Γba = Γbc = 3.2 MHz; Γca = 1.0 MHz; γba = 2.1
MHz; γbc = 4.2 MHz; γca = 1.3 MHz; γac = 0.32 MHz; ∆g = 450 MHz; and
∆p = −1440 MHz.
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Raman peak already shows some power-broadening effects. This discrepancy

is in fact quite easy to explain. The above calculations have not yet taken

Doppler broadening (or any other broadening effects) into account. Until this

is done, a Þrst order approximation to the full width at half maximum of all

the (unsaturated) features is their natural linewidth, approximately 6 MHz.

In addition to the general narrowness of the features, a large number of

peaks in the spectra predicted by the numerical calculation remain unlabeled.

These features might, on Þrst glance, seem difficult to explain in terms of

a simple three-level atom, especially as I have already identiÞed the obvious

physical processes and effects. A number of different effects contribute to the

complexity of the spectra and these new resonances, perhaps the most impor-

tant of which are the splitting and shifting of atomic energy levels in a strong

applied Þeld that were described in Sec. 5.3.1. Recall that the strong pump

Þeld created level triplets in the three-level atom. Rabi transitions between

these new levels appear at a multitude of frequencies, and explain all of the

new resonant features in the calculated absorptive response.

Despite the creation of new resonances due to AC Stark shifting, exper-

imentally we do not see a multitude of new features appearing in the probe

transmission spectra. Again, this is at least partially due to Doppler broaden-

ing effects which have not yet been incorporated into our theory.

5.4.3 Doppler Averaging

The results of the previous analysis do not (and should not be expected to!)

yield spectra that correspond well with our experimental results. In order to ac-

curately describe our physical system, I also need to perform a Doppler average
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over the atomic velocities in the gain medium. Performing a Doppler average

consists of integrating the single-atom absorptive response over a distribution

of suitably averaged atomic velocities.

I follow the averaging procedure used in Ref. [41]. For simplicity I as-

sume two exactly copropagating beams, which reduces the three-dimensional

averaging to the one-dimensional average performed by the integral

αD(ωD,ωp) =
1√
π

Z +∞

−∞
dωD α(∆p − ωD/T ∗2 ) exp[−ωD2] , (5.44)

where ωD is the Doppler shift experienced by both the pump and probe waves

and all quantities have been normalized to the dephasing rate. The quantity

T ∗2 =
λ

2π
(m/kBT )

1/2 (5.45)

is the effective Doppler dephasing time, and can be orders of magnitude smaller

than the dephasing rate for a naturally broadened atom. In potassium, T2 = 50

ns while T ∗2 = 0.41 ns. This leads to a Doppler broadened linewidth of ∼ 400
MHz, as compared to the 6 MHz naturally broadened linewidth.

There are two Þnal notes to make about the Doppler averaging. First,

our experimental data has a nonzero residual Doppler linewidth which is not

included in our theory, because in reality the beams crossed at a Þnite angle.

A future version of the theory will account for this effect. Second, the probe-

pump detuning ∆p in Eq. 5.44 should really be the Doppler averaged detuning.

However, as shown in Chapter 4, for counter-propagating beams the Doppler

averaged and non-Doppler averaged detunings are identical.

Figure 5.7 illustrates the dramatic effect Doppler averaging has on the the-

oretical results, where the averaging was performed on the spectra previously

shown in Fig. 5.6. The most obvious effect is the broadening and ßattening
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Figure 5.7: Comparison of a Doppler averaged spectrum with one that has not
been Doppler averaged. Parameter values are the same as those used in Fig.
5.6.

of the numerous individual Rabi peaks. This smooths the general appearance

of the spectrum by making many of the features created by Rabi transition

between Stark levels unresolvable. All Rabi features are signiÞcantly affected

by Doppler broadening � not only do they broaden, but their Doppler averaged

amplitude is generally only a small fraction of their original amplitude.

The Raman peaks, on the other hand, are only marginally affected by the

Doppler averaging. Raman interactions involve pairs of photons in making a

transition between atomic states, where the transition takes place only when a

resonance condition � the detuning between the incident laser beams is equal

to the Þxed ground state splitting of the atom � is satisÞed. Yet in the special
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case where the pump and probe beams are copropagating, this detuning is

unaffected by atomic motion, so Doppler averaging plays little role in deÞning

the transition proÞle. In a similar manner, the Rayleigh scattering feature is

relatively unaffected by the effects of atomic motion. At a zero probe-pump

frequency detuning, copropagating waves are again Doppler shifted by exactly

the same amount, effectively cancelling the Doppler effect. In addition, further

analysis shows that the width of the resonance is approximately independent

of the atomic velocity [41], so the spectral shape of the Rayleigh scattering fea-

ture away from zero detuning remains virtually unchanged. Figure 5.7 clearly

illustrates the constancy of the size and shape of the Raman and Rayleigh

resonances.

Doppler averaging proves computationally intensive, requiring an average

over the atomic velocities at each and every probe-pump detuning in the spec-

trum. I found it most efficient to change the convolution integral (of the non-

averaged spectra with a Gaussian velocity distribution) represented by Eq.

5.44 to an ordinary differential equation,

dαD(ωD,ωp)

dωD
=

1√
π
α(∆D − ωD/T ∗2 ) exp[−ωD2] . (5.46)

I continue to use the sparse matrix solving routine described previously to Þnd

the non-averaged absorptive response at each point. Then I use a canned Nu-

merical Recipes fourth-order Runge-Kutta numerical integration routine with

variable step size [54] to evaluate the Doppler averaged probe absorption. Com-

putation time for the Doppler averaged spectrum was about 10 seconds at each

probe-pump detuning.
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5.5 Theoretical parameter values

As I have said earlier, the theory is not yet advanced enough to make an exact

quantitative comparison between experiment and results. Such a comparison

would require computation of the absorption coefficient rather than the ab-

sorptive response, which involves both proper normalization of the parameters

to the experimental system and a careful accounting of propagation effects.

We would also need to include effects resulting from the full level structure of

potassium, and account for the Gaussian, rather than constant, beam proÞles.

Despite these factors it remains both useful and valid to run theoretical calcu-

lations in which actual experimental parameters are input in order to model

the experimental system. At a minimum, this allows a check to see if the the-

ory produces both the expected features and the expected general trends as

the parameter values are adjusted.

In the last chapter, I identiÞed some of the important experimental param-

eters used to realize high two-photon gain. In addition, the theory requires

knowledge of atomic parameters such as the spontaneous emission rates and

electric dipole matrix elements. Knowledge of matrix elements in conjunction

with laser intensities is used to calculate Rabi frequencies of the incident Þelds

input into the theory. Estimates of these parameters, which I then use to com-

pare our theoretical absorptive response to actual experimental spectra, are

described below.

5.5.1 Calculation of the electric dipole matrix elements

While studying the 4P1/2 → 4S1/2 transition in potassium, incorporation of the

4S1/2 ground state hyperÞne splitting proves crucial for our results because the
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Figure 5.8: Level scheme used in the calculation of dipole matrix elements

Raman transition of interest explicitly involves both these levels in transferring

population from one ground state to the other. As a result, I model the atom

using three levels, two ground states (labelled a and c) and one excited state

(labelled b) as shown in Fig. 5.8. Even this does not completely represent the

atom, however, because the coupling of the total electronic angular momen-

tum F with the nuclear angular momentum I leads to a magnetic hyperÞne

structure which we have ignored up until this point.

A more complete diagram of the relevant potassium levels is shown in Fig.

5.9. Both states have two hyperÞne structure F levels, which then in turn

have 2F + 1 magnetic sublevels labelled by M . When selection rules permit,

there are nonzero electric dipole matrix elements between all of the excited-

state hyperÞne levels and sublevels and all of the ground-state hyperÞne levels

and sublevels. These matrix elements can be calculated (in the LS coupling
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Figure 5.9: Level diagram for potassium

approximation) using the Wigner-Eckart theorem, which states

D
(j0I 0)F 0M 0 | µ(1)q | (jI)FM

E
= (−1)F 0−M 0

Ã
F 0 1 F
−M 0 q M

!
×h(j0I 0)F 0 k µ(1) k (jI)F i . (5.47)

Here primed terms indicate the excited state and the unprimed ones represent

the ground state. The dipole matrix element is written as a Þrst-order tensor

operator µ(1)q , where q is the polarization of the light used and q = 0 represents

�z polarization.
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F=1 F=2

F0=1 −1/2 −√5/2
F0=2

√
5/2 −√5/2

Table 5.1: Values of the reduced matrix element hF 0 k µ(1) k F i . Each element
in the table should be multiplied by the factor µo.

I Þnd the reduced matrix element in the above equation as

h(j0I 0)F 0 k µ(1) k (jI)F i = δI0I(−1)j0+I+F+1
q
(2F 0 + 1)(2F + 1)

×µo
(
j0 I F 0

F 1 j

)
. (5.48)

The constant µo is deÞned equal to the matrix element hj0 k µ(1) k ji , which
is actually independent of j and j0. The Wigner three-j and six-j symbols in

the above equations are calculated using Mathematica. Using Eqs. 5.47 and

5.48, Table 5.1 summarizes the reduced matrix elements for the 4P1/2 → 4S1/2

transition in potassium. Table 5.2 lists the �z component of the electric dipole

moment between the states, where the electric Þeld orientation is assumed to

be aligned with the z axis of the potassium atoms.

Electric dipole matrix elements are used to calculate a number of impor-

tant quantities, such as laser beam Rabi frequencies, individual spontaneous

emission lifetimes, and the strength of a transition between levels. Before they

can be effectively used in this manner, however, a numerical value for the con-

stant µo must be found in order to explicitly evaluate the matrix elements in

terms of some known quantity. This can be done through knowledge of the

experimentally observed spontaneous lifetime of 1/(25 ns) for the 39K excited

state.

Using Eq. 4.23 in Ref. [55], the spontaneous emission rate (also called the

Einstein A coefficient) can be written in terms of a sum over the possible decay
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F=2 F=2 F=2 F=2 F=2 F=1 F=1 F=1
F0 M0 M=2 M=1 M=0 M=-1 M=-2 M=1 M=0 M=-1
2 2 1√

6
0 0 0 0 0 0 0

2 1 0 1
2
√
6

0 0 0 1
2
√
2

0 0

2 0 0 0 0 0 0 0 1√
6

0

2 -1 0 0 0 −1
2
√
6

0 0 0 1
2
√
2

2 -2 0 0 0 0 −1√
6

0 0 0

1 1 0 1
2
√
2

0 0 0 −1
2
√
6

0 0

1 0 0 0 1√
6

0 0 0 0 0

1 -1 0 0 0 1
2
√
2

0 0 0 1
2
√
6

Table 5.2: Relative values of the z component of the electric dipole matrix
elements for the potassium 42P1/2 → 42S1/2 resonance. Each element in the
table should be multiplied by the factor µo.

routes,

A out of
F 0=1,2

=
4e2ω3

3~c3
1

2F + 1

X
F

X
qM 0M

|hF 0M 0 | ~r|FMi|2 (5.49)

=
32π3

3~λ3
1

2F + 1

X
F

|hF 0 k µ(1) k F i|2 ,

where I have represented ~µ = e~r . I can explicitly write out the terms appearing

in the above sum,

X
F

|hF 0 k µ(1) k F i|2 = |h1 k µ(1) k 1i|2 |h1 k µ(1) k 2i|2 (5.50)

=
·
−µo
2

¸2
+

"
−
√
5µo
2

#2
,

where I have used Table 5.1 to evaluate the given matrix elements. Because the

spontaneous emission rate and value of the summation in Eq. 5.49 is known,

the only unknown is then µo. Solving in terms of natural atomic units (with a

wavelength of λ = 770 nm) then gives

µo = 4.23eao. (5.51)
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From this I now need to calculate the total effective matrix elements be-

tween the 4S1/2 (F=1)→ 4P1/2 manifold (a→ b), and between the 4S1/2 (F=2)

→ 4P1/2 manifold (c → b). These will involve a sum over all of the possible

levels in the 4P1/2 manifold that can decay to the F=1 ground state in the Þrst

case, or the F=2 ground state in the second case. Using the results in Table

5.2, the total effective matrix elements are found as

|µba| =
"X
F 0

¯̄̄D
F 0M 0 ¯̄̄µ(1)o ¯̄̄

1M
E¯̄̄2#1/2

=
µo√
2

(5.52)

and

|µbc| =
"X
F 0

¯̄̄D
F 0M 0 ¯̄̄µ(1)o ¯̄̄

2M
E¯̄̄2#1/2

= µo

s
5

6
. (5.53)

For one familiar with such matrix element calculations, these results are not

unexpected: the matrix elements differ only by the square root of the ratio of

the number of magnetic sublevels in the initial state (Þve to three).

5.5.2 The Rabi frequency

An important conclusion reached from Eqs. 5.52 and 5.53 is that because the

matrix elements differ, they result in different Rabi frequencies for transitions

between the states b → a and b → c even for the same pump and probe

intensities.

The Rabi frequency for a transition between two atomic states was pre-

viously deÞned in Eq. 5.4 to be Ωij = 2µij · E(r, t)/~. Given that the Þeld
intensity is

I =
c

2π
|E(r,t)|2 , (5.54)

I solve for the Rabi frequency as

Ωij =
2µij
~

s
2π

c
I .
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After performing a few unit conversions, I write the Rabi frequency in the

following useful form,

Ωij (MHz) = 1.12 µij(eao)
q
I (mW/cm2) , (5.55)

where I have indicated that the matrix element is speciÞed in units of eao and

the intensity in units of mW/cm2. The resulting Rabi frequency is given in

MHz.

The intensities for various pump and probe beam settings were calculated

in Sec. 4.8.4, and reasonable values of the effective dipole matrix elements were

just derived in Sec. 5.5.1. From these numbers, I arrive at pump beam Rabi fre-

quencies of about (Ωba)d ' 7.5× 103 and (Ωbc)d ' 1.0×104. After attenuation,
the range of probe Rabi frequencies I typically work with is (Ωba)p ' 75−1500
MHz and (Ωbc)p ' 97− 1950 MHz. As described a bit later, however, I believe
these estimates to be signiÞcantly larger than the working Rabi frequencies.

5.5.3 Spontaneous emission rates

Calculation of the individual spontaneous emission rates from the b manifold

(involving all of the levels in the 4P1/2 state) to levels a and c is the Þnal

problem to solve using the dipole matrix elements. The spontaneous emission

rate for any individual transition can be calculated as

AF 0→F =
32π3

3~λ3
1

2F + 1
|hF 0 k µ(1) k F i|2 . (5.56)

The only difference between the above equation and Eq. 5.49 is that the

experimentally observed spontaneous emission rate necessarily sums over all

possible transitions allowed by the Wigner-Eckart theorem. The observed rate
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is thus larger than any of the individual rates between the states. Note that

Eq. 5.56 has no dependence on the magnetic sublevels M or M 0.

Using Eq. 5.56 we calculate the total decay rate out of level b to level a as

γba = AF 0=1→F=1 +AF 0=2→F=1 = 1.33× 107 sec−1 , (5.57)

and the rate out of level b to level c as

γbc = AF 0=1→F=2 +AF 0=2→F=2 = 2.66× 107 sec−1 . (5.58)

The branching ratio for spontaneous decay from the excited state to the lower

ground state versus the upper ground state is then one to two.

5.5.4 Ground state decay

Although the theory allowed a calculation of the spontaneous decay rates out

of the excited state, I cannot perform such a calculation for the population

decay rates γca and γac. This results from the fact that both levels c and a are

ground states, and hence have theoretically inÞnite lifetimes. In the theory

calculations, this might indicate we should take the population decay between

the ground states to be identically zero. However, I want to use parameter

values that well represent the experimental situation, and due to resonant

scattering processes taking place in the experimental atomic medium, there is

a measurable (though small) population transfer rate between the states. These

rates can even be unequal due to the different number of magnetic sublevels in

each state.

In virtually all of our theoretical calculations, I model the population trans-

fer between levels c↔ a with nonzero population decay rates. Typical values

used in the calculations are γca = 0.64 MHz and γac = 0.32 MHz. In addition,
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nonzero population decay rates necessarily lead to a nonzero dephasing rate

from c to a, because the total dephasing rate Γca is always greater than or equal

to the dephasing rate due only to natural broadening, Γoca = 0.5(γca + γca). A

typical dephasing rate is Γca = 0.8 MHz.

5.5.5 What are the working intensities?

In conjunction with the experimental parameters described in Chapter 4, esti-

mates of the matrix elements, decay rates, and Rabi frequencies should results

in spectra that reasonably reßect the experimental conditions. Initial tests

of the theory parameters, however, produced atomic responses quite different

from what I expected. A bit of testing quickly demonstrated that this resulted

from Rabi frequency estimates that were likely far too large.

Theoretical results in conjunction with comparisons to experimental spectra

lead me to believe we are not actually working at the high intensities predicted

by the estimates of the beam sizes (and powers) in the vapor cell given in

Sec. 4.8.4. I do not notice any effects indicating the huge differential Stark

shifts that would result from such high beam intensities. Nor do I see Rabi

scattering features detuned from the pump Þeld by 2 or 3 GHz, as they would

be at these intensities. In addition, at very high intensities the ground state

populations are moved around in such a way as to destroy any Raman gain.

This was shown in Fig. 5.8, where numerical theory veriÞed the extinction

of Raman gain for Rabi frequencies more than a few times the given ground

state splitting. Because it is indisputable that signiÞcant Raman gain was

experimentally seen, I believe that the actual pump and probe beam intensities

are smaller than those given in Sec. 4.8.4.
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There are a few possible explanations as to how we can be working at lower

intensities than those measured using the beam proÞle technique, and hence I

do not worry too much about this apparent disagreement. First, self-defocusing

effects are visibly present in the beam and prevent an exact determination of

the beam diameter inside the potassium cell. Self-defocusing comes about when

temperature changes in the cell change the potassium vapor pressure, which

changes the index of refraction of the sample, and hence the beam overlap and

absorption in the cell. At high enough temperatures, as the probe beam nears

and scans through resonance, the beam blooms to three times is normal size and

at times even displays a distinct ring pattern. This self-defocusing causes the

beam to partially break up, reducing the intensity seen by the atomic medium.

It is difficult to determine the exact magnitude or effect of self-defocusing, but

a factor of two, Þve, ten, or more difference in calculated versus actual beam

intensity is not farfetched.

In addition, the theory assumes a constant intensity proÞle even through

the beams are measured to be approximately Gaussian. Because the pump

and probe beams intersect at a Þnite crossing angle, the probe beam atoms in

the interaction region then see a spatially varying intensity proÞle. To make

things even more complicated, it is quite possible that the two-photon Raman

transition is saturated in the center of the actual probe beam proÞle, and not

saturated toward the beam edges.

How might the variable, and perhaps saturated, beam proÞle affect the

results? Recall that the gain proved to be critically dependent on the beam

focus and crossing angle. Due to saturation, the gain in the wings of the beam

could be one or two orders of magnitude higher than that in the center of
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the beam. It is quite possible that in tweaking up the two-photon Raman

gain, the best effects were seen when the probe beam sits on the tails of the

pump beam, away from the tight focus and high intensities. The transitions of

interest would no longer be saturated, yet there would still be a steady ßow of

optically pumped atoms across the probe beam proÞle. The measured optical

spectrum could then correspond to intensities in the wings of the pump beams,

intensities which are far lower than those predicted at the beam center.

Due to these factors, it seems necessary to revise my estimate of the pump

and probe Rabi frequencies signiÞcantly downward. I feel that new, reasonable

estimates for the pump Rabi frequency are (Ωba)d ' 1200 MHz and (Ωbc)d '
1800 MHz, while the probe Rabi frequencies fall in the range (Ωba)p ' 6− 120
MHz and (Ωbc)p ' 8− 150 MHz

5.6 Comparison between theory and experi-

ment

Now comes the time to test the theory in a comparison of the shape of the

theoretically predicted absorptive response with actual experimental data. I

want to see what gain and loss features are predicted by the theory and where

they are located when parameter values closely corresponding to experimental

circumstances are input into the computer code.

Figure 5.10 shows the Doppler-averaged, single-atom response of the driven

system as a function of the probe-beam frequency for various probe-beam in-

tensities. Qualitatively, the theory produces the correct intensity dependence

of the Raman transition probabilities, as seen through comparison with Fig.

4.12. At low probe Rabi frequencies, the one-photon Raman gain is quite large
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� up to a few thousand percent gain. As the probe Rabi frequency increases, the

one-photon transition saturates, two-photon gain becomes apparent, and then

when it too saturates three-photon Raman gain is seen as well. The Raman

peaks are appropriately spaced at the hyperÞne splitting (and its subharmon-

ics) of the modeled atomic ground state. Note that here I have explicitly quoted

the theoretical probe beam intensities, whereas in Chapter 4 uncertainty in the

beam sizes due to effects such as self-focusing forced us to specify the probe

power rather than the probe intensity. It should be obvious that the theory

reproduces the correct general trends in the intensity dependent spectrum.

As explicitly demonstrated in Fig. 5.11 for a single value of the probe beam

intensity, there is excellent qualitative agreement between the theoretical curves

and the experimental data. (The experimental data is taken from that shown

previously in Fig. 4.12b.) All of the correct features are duplicated, including

the one-photon Raman gain, two-photon Raman gain, dispersive Rayleigh res-

onance, and broad Rabi resonance. The only peak in the experimental data

not duplicated by the theory is due to one-photon Raman gain from the 41K

isotope present in our vapor cell. As the theory is a single-atom theory, and I

input parameter values corresponding only with the 39K isotope, it would be

worrisome if the theory did predict this isotopic gain peak!

As one would expect in an incomplete theory, the quantitative agreement is

not as exact. The heights of the Raman peaks relative to each other and to the

Rabi resonances do not always match as well as they appear to in Fig. 5.11.

Especially at high pump and probe Rabi frequencies the Raman resonances

show a sensitive dependence on the choice of γca and γac decay rates. At high

Rabi frequencies the atomic populations are severely modiÞed by the laser
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Figure 5.10: Theoretical dependence of the probe transmission spectrum on
probe beam intensity. This should be compared with Fig. 4.12.
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Figure 5.11: Comparison between the shape of the calculated theoretical output
spectum versus actual experimental data. Parameter values used in this plot
are: (Ωba)d = 560 MHz; (Ωbc)d = 740 MHz; (Ωba)p = 90 MHz; (Ωbc)p = 115
MHz; Γba = Γbc = 3.2 MHz; Γca = 0.8 MHz; γba = 2.1 MHz; γbc = 4.2 MHz;
γca = 0.64 MHz; γac = 0.32 MHz; ∆g = 450 MHz; and ∆p = −1440 MHz.

beams, and hence changing the equivalent optical pumping effectiveness by

changing the c ↔ a decay rates can signiÞcantly effect the expected gain or

loss in the atomic medium. Additionally, in almost all of the calculations the

Rayleigh scattering feature appears broader and larger than that seen in the

data. Only by modifying the decay and dephasing rates (in an unphysical

manner) can this feature be more accurately matched. Finally, the size and

location of the Rabi scattering feature is quite dependent on the choice of

detuning parameter. This feature can be moved around virtually at will simply

by changing the detuning.
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Despite these problems, Figs. 5.10 and 5.11 represent an impressive theoret-

ical accomplishment. These Þgures should make it clear that our semiclassical

theory reasonably describes the processes that occur in a system composed

of three-level atoms interacting with two laser beams (such as a potassium

atom explored using pump-probe spectroscopy). The theory reproduces the

most important processes affecting the atom, including optical pumping, Ra-

man scattering, and Rayleigh and Rabi scattering. The scattering features

also demonstrate the correct general intensity dependences. Additionally, the

theory accurately accounts for the effects of Doppler broadening. A future

version of the theory which includes propagation effects and the magnetic sub-

levels of potassium should provide an excellent theoretical representation of the

experimental system that can proÞtably used for its predictive capabilities.



Chapter 6

Previous Work on Two-Photon Lasers

6.1 Theoretical Work

The past few chapters have described work done in the development of a ro-

bust two-photon ampliÞer using two-photon stimulated Raman scattering as

the basis for producing two-photon gain. Future work in this system will

Þrst explore the characteristics of this nonlinear ampliÞer, and then focus on

building a two-photon Raman laser. As described in Chapter 2, building a

two-photon laser from a two-photon ampliÞer is a nontrivial task, although

the large, spectrally distinct two-photon gain displayed by in the Raman sys-

tem should simplify matters considerably. Theoretical and experimental explo-

rations into two-photon lasers have a rich history, and this chapter serves as a

review of the literature written about two-photon lasers from their conception

to the present time. This is useful not only because it Þnally collects all of

the literature on two-photon lasers in one place, but also because it helps to

further emphasize some of the interesting features of these devices.

Researchers have been intrigued by two-photon lasers for the past three

decades because the highly nonlinear character of the laser challenges our abil-

172
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ity to describe its behavior, especially at the quantum level. A cursory glance

at the theoretical literature on two-photon lasers might lead one to believe

that the system is well understood. However, a closer inspection reveals that

there are contradictory predictions concerning even the most basic properties

of the laser. Unfortunately there has been little guidance from experimental

work, because two-photon laser action has been realized only under limited

conditions. This situation is a result of the trade-off between obtaining large

two-photon gain (which occurs at high intensity) and avoiding competing pro-

cesses such as normal one-photon lasing to other atomic states, energy level

shifts, and multi-wave mixing. Typically, two-photon lasing is either obscured

or completely suppressed by the competing processes.

A recent resurgence of interest in two-photon lasers has been motivated in

part by the realization of a two-photon maser [25] and by the introduction of

an innovative scheme for obtaining multi-photon gain in the optical part of

the spectrum. The new gain medium was successfully used in the Þrst demon-

stration of continuous-wave two-photon optical lasing [18], and was an exciting

triumph of experimental quantum optics. Although the realization of a two-

photon laser Þnally veriÞed some of the theoretical predictions concerning its

properties, a number of questions remain unanswered. This chapter is intended

to review the literature, controversy, and conßicting predictions written to date

about the two-photon laser. The chapter considers theoretical work and exper-

imental progress independently. Within both the theoretical and experimental

sections, there is a loose attempt to group the papers thematically, where then

within each thematic section the papers are explored chronologically.
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6.1.1 Early Papers

Quantum ampliÞers based on two�photon processes were discussed quite early

in the development of nonlinear optics. The Þrst mentions of an oscillator based

on two-quantum transitions � a two-photon laser � were independently made

by Prokhorov [1], a Russian scientist, and Sorokin and Braslau [2] from IBM

Laboratories in the early 1960�s. It is interesting to note that Prokhorov did not

turn to a scientiÞc or industrial journal to publish his new ideas concerning the

two-photon laser. Rather, he included them in a lecture delivered in Stockholm

when he received the 1964 Nobel Prize in Physics (with C. H. Townes and N.

Basov for invention of the maser and a theory of coherent atomic radiation)!

Two-quantum oscillators offer the possibility of tunable frequency lasing

since the only theoretical frequency constraint is that of energy conservation

� the sum of the two frequencies generated must be equal to the frequency

difference between the levels of the transition. The possibility of achieving high

light intensities in these systems also piques interest in the development of two-

photon lasers [56]. Saturation effects limit the power output of most lasers, yet

because two-photon lasers have far higher saturation intensities than their one-

photon counterparts they have the potential to achieve higher laser power than

the usual one-photon laser. Since only modest power, Þxed-frequency lasers

existed in the early sixties, experimentalists were intrigued and excited by

the opportunities these new oscillators offered. Theorists were also intrigued,

because the nonlinearities associated with a two-photon laser challenged our

understanding of the interaction of light with matter.

Only a few years after the Þrst proposal of two-photon lasers, Lambropoulos

[57], [4] discusses a quantum ampliÞer based on two-photon transitions. He
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Þnds that such an ampliÞer has novel coherence and statistical properties,

quite unlike a one-photon laser or any other light source available at that

time. His results lead to predictions that the output state from a two-photon

oscillator may also have novel statistical properties. Despite the passage of

almost thirty years since these ideas were Þrst expressed, questions concerning

the light output from two-photon ampliÞers and lasers remain unanswered even

today.

Carman [58] uses a rate-equation viewpoint to examine ampliÞers based on

a two-photon stimulated emission. He enumerates the difficulties anticipated

in realizing practical two-photon ampliÞers, including small gain, maintaining

spatial coherence, and inversion depletion through the ampliÞcation process.

Gordon and Moskvin [59] consider optical ampliÞcation by two-photon tran-

sitions and multiphoton transitions in general. They Þnd that the nonlinear

character of two-photon stimulated emission and ampliÞcation lead to a num-

ber of distinguishing features of the pulse propagating through the medium,

including an ampliÞcation threshold and some early results on the effect of

an external beam to�ignite� the transition. Narducci et al. [60] present a

detailed theory for a degenerate two-photon laser ampliÞer, and discuss pulse

propagation through a two-photon absorbing medium. They derive the Bloch

equations and construct an equation for the pulse energy density in the ab-

sorbing medium, obtaining an unstable pulse envelope with a Lorentzian line

shape.
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6.1.2 Semiclassical Approach

General theoretical treatments of the two-photon laser have been performed

classically, semiclassically and quantum mechanically, where often the laser

characteristics and behavior under study determine the approach taken. In

semiclassical laser theories the electromagnetic Þeld is treated classically using

Maxwell�s equations, while the atom is treated quantum mechanically in terms

of its discrete energy levels and atomic transitions.

Hoshimiya, Yamagishi, Tanno, and Inaba [61] present a semiclassical anal-

ysis of two�photon laser oscillation in an optical cavity. They derive a laser

threshold condition and Þnd a need for injection of a complimentary Þeld into

the cavity for triggering two�photon stimulated emission. Bulsara and Schieve

[62] also consider a semiclassical treatment of the two-photon laser. In agree-

ment with Narducci�s results [60] for the two-photon ampliÞer, they Þnd an

unstable solution for the photon energy density. They go on to show using

two separate methods that this instability is a consequence of retaining higher

order terms in the solution for the energy density, which corresponds to the

neglect of virtual processes in a quantum theory.

An early paper by Schubert andWiederhold [6] analyzes the time dependent

photon ßux, the initiation of the lasing process, and the effects of an injected

starting pulse in a two-photon laser, calculated on the basis of classical rate-

equations. For calculational simplicity their analytic solution assumes that the

population inversion remains constant. This unfortunately leads to nonphysical

(and inÞnite!) results for the photon ßux. Fernández and Sainz [63] perform a

density matrix treatment of a two-photon laser. Theirs is the Þrst two-photon

laser treatment dealing with saturated two-photon emission. Songen [64] uses a
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steady-state solution of the optical Bloch equations to discuss continuous-wave

two-photon lasing, but his results are not self-consistent and thus cannot be

compared with other results. Concannon and Gauthier [65] propose a simpliÞed

effective model for a two-photon laser with injected signal based on a rate-

equation analysis. They look at the dynamical behavior of both the photon

ßux and population inversion above and below threshold, and see evidence of

bistability and a Þrst-order phase transition at threshold.

6.1.3 Simple Quantum Theory

The different approaches toward the development of the theory of a two-photon

laser all have different strengths and weaknesses. A classical or semiclassical

treatment is insufficient for the study of some of the novel coherence properties

and stability properties of the laser. In fact, the majority of the literature on

two-photon lasers is devoted to a quantum description of their behavior, mainly

because a great portion of the theoretical interest in a two-photon laser lies in

their intrinsic nonlinearities and nonclassical characteristics. Quantum theories

quantize both the atomic energy levels and the Þeld photons and modes. Semi-

classical theories approximate the full quantum treatment by treating the Þeld

in a classical manner. In the 1960�s and early 1970�s, a quantum description

of one-photon lasers, which involve a single photon absorption and emission

per atomic transition, proved very successful in explaining the bulk of one-

photon laser phenomena. It wasn�t long before researchers started modifying

the quantum theory in order to analyze two-photon lasers as well.

A detailed theory of two-photon lasers was put forth in a series of papers

by Wang and Haken in 1984. They perform an analysis based on the exact
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microscopic Hamiltonian which assumes a high-Q cavity (cavity linewidth ¿
atomic linewidth), a circulating Þeld that is not too intense, and neglects Stark

shifts of the levels [66]. The restriction on cavity Q-value allows atomic vari-

ables to be adiabatically eliminated, and that on Þeld intensity allows neglect

of higher-order terms in the equations. Although they start from a full micro-

scopic Hamiltonian, Wang and Haken Þrst simplify the analysis by averaging

over the ßuctuation and dissipation of the atoms and lightÞeld in the quan-

tum mechanical equations of motion for the Þeld amplitudes, atomic dipole

moments, and inversion. They solve the resulting semiclassical equations for

the stationary solutions and their stabilities, and conclude that there exists a

critical value of inversion below which there cannot exist any stable ordered

state. The photon number of a mode thus starts from the critical value at the

critical inversion and increases with the inversion. This is different from the

behavior of one-photon lasers in which the photon number starts from zero

value at threshold.

A further treatment by Wang and Haken [67] retains the full quantum com-

plexity of the system using a Fokker-Planck analysis, and addresses thermal

ßuctuations (noise) and stability in the two-photon laser, both with and with-

out an injected signal as a trigger. They show that a two-photon laser displays

a Þrst-order phase transition at the onset of lasing � there is a discontinuous

jump in the laser output as threshold is reached. This contrasts with the con-

tinuous, second-order, change in the Þeld amplitude at threshold in the one

photon laser. Also, in agreement with the heuristic model of laser threshold

discussed in the introduction, they Þnd that the laser will not make this jump

to the lasing state until the photon number exceeds a certain threshold even
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when the inversion exceeds the threshold value. In general, ßuctuations due to

spontaneous emission are not enough to overcome this threshold. As a result,

they also study the effect of injecting a signal into the laser cavity to start the

transition [8]. They Þnd that a degenerate two-photon laser with an injected

signal resonant with the frequency of the laser has threshold behavior again

analogous to a Þrst-order phase transition. There exists a critical value of the

inversion below which the lightÞeld amplitude is single valued, and above which

bistability occurs.

With the notable exception of the Fokker-Planck treatment of the two-

photon laser described above [8], the majority of researchers approach the

quantum theory of the two-photon laser by generalizing the Scully-Lamb [68]

theory developed for ordinary single photon lasers (the so-called master equa-

tion formalism). The Scully-Lamb approach to the quantum theory of the

laser oscillator uses a density matrix description of the Þeld inside the res-

onator. Both the radiation Þeld and atomic medium are treated quantum me-

chanically, and instead of describing the radiation Þeld in terms of amplitudes,

phases, and frequencies it is described quantum mechanically by a density ma-

trix. The atom-Þeld interaction is described by a microscopic Hamiltonian.

Generally, the theory includes a nonlinear active medium for gain and a damp-

ing mechanism for loss, treats only a single-mode laser, and neglects the effects

of Doppler broadening and spatial variations in the Þeld. The complete equa-

tions of motion for the radiation density matrix are found and are used to

compute physical properties of the laser. The diagonal density matrix equa-

tions describe the ßow of probability for Þnding photons in the laser cavity due

to stimulated emission and damping, and are used to calculate mean photon
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numbers and other photon statistics. The off-diagonal elements can be used to

Þnd lineshapes, correlation times, and the spectral proÞle.

McNeil and Walls [56] propose one of the Þrst theoretical descriptions of the

two-photon emission process, and advance the theory of possible two-photon

lasers. They use a quantum mechanical model generalized from the Scully-

Lamb one-photon laser model and derive the photon statistics of the laser

Þelds. They separately consider multiphoton lasers which preserve detailed

balance and those that don�t. Detailed balance assumes a multiphoton loss

mechanism for the laser light of the same order as the multiphoton gain from

stimulated emission. In an n-photon laser, n photons are lost simultaneously

in a stimulated de-excitation process. For a two-photon laser, detailed balance

then only allows for two-photon loss, while a more general theory allows for one-

photon loss as well. McNeil and Walls Þnd laser threshold behavior analogous

to a second-order phase transition1 and a photon distribution narrower than

that for thermal light. Görtz and Walls [69] use a less computationally intense

method to duplicate the results of McNeil and Walls in their solution of a two-

photon laser master equation without detailed balance. Nayak and Mohanty

[70] extend the previous theories to take atomic motion and Doppler broadening

into account, inclusions which affect the performance of one-photon lasers.

They compare the photon distribution for one- and two-photon lasers and Þnd

a narrowing of the two-photon laser distribution line. They note that the

restrictive two�photon loss mechanism may affect their results, a fact that is

further discussed by other authors.

1Later papers (including one by Reid and Walls [89]), re-evaluate these early analyses and
come to the consensus that the transition through laser threshold will be Þrst-order phase
transition.
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The approach taken by Sczaniecki [71] does not involve detailed balance,

but rather assumes a single�photon loss mechanism related to transmission at

the end mirrors. He performs a stability analysis of the solutions derived for

the operators characterizing the system, and shows that the transition through

the threshold of a multiphoton laser is a Þrst-order phase transition. A later

paper by Sczaniecki [72] extends his previous results, which are valid only for

the degenerate case, to the case where the multi�photon emission concerns

more than one distinct Þeld mode. The transition through the multiphoton

laser threshold is quite generally found to be a Þrst-order phase transition.

Zhu and Scully [73] study a nondegenerate two-photon laser in a cascade

three-level atomic system. Two beams of different frequencies are incident on

the atomic system, and they speciÞcally look at the effects of the two Þelds

on each other in terms of population redistribution and gain enhancement

or reduction. Holm and Sargent [74] use a two-photon two-level model in a

quantum theory of multiwave mixing in which one strong classical wave and one

or more weak quantum waves interact in a nonlinear medium. They present a

detailed calculation of the two-photon resonance ßuorescence spectrum which,

unlike most previous work, accounts for the dynamic Stark shifts which play an

important role in two-photon transitions. The Stark shifts lead to a noticeably

asymmetric ßuorescence spectrum, which is related to probe gain and loss in

the absorption spectrum. Although the results technically apply only to two-

photon gain, their pertinence to a two-photon laser is evident.

Boone and Swain [75] author a series of papers deriving the equations of

motion for the Þeld density matrix of the two-photon laser starting from the

full microscopic Hamiltonian. They calculate mean photon numbers, laser
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linewidths for each mode, frequency shifts (amount by which the operating fre-

quency of the laser is shifted from the cavity frequencies), and cross-correlation

coefficients (extent to which phase ßuctuations in the output of the laser modes

are correlated). They compare the results with those found using an effective

Hamiltonian, which only includes two-photon processes, while a full quantum

theory accounts for stepwise (cascade) processes as well. It is expected, and

previous theories assume, that the effective Hamiltonian proves a good model

whenever the single photon detuning of the intermediate state from the laser

frequencies is large, reducing the probability of stepwise processes. However

Boone and Swain show that the laser must also be operating above, but not

too far above, threshold in order to prevent power broadening from bringing

the intermediate state into effective resonance. They conclude that the effec-

tive and full Hamiltonian approaches predict identical diagonal density matrix

elements in the right limits. The off-diagonal elements, however, signiÞcantly

differ between the models, mainly due to the effective Hamiltonians neglect of

Stark shifts, and the strong dependence of the off-diagonal element quantities

on detailed atomic structure. Their work thus catalogues regions of validity

for the differing models.

Cheng and Haken [76] describe quantum ßuctuations and photon statistics

in the two-photon laser by starting with a master equation for the density op-

erator of the atoms and the Þeld mode. Zhu and Li [77] use a three-level atomic

system as their basis for a two-photon laser model, and note the differences

in the quantum theory that arise from an exact microscopic versus effective

Hamiltonian. They study the photon statistics in the exact case, and look at

the effects of detunings on their results.
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Many early studies on the quantum statistical properties of the radiation

coming from two�photon lasers concerns photon statistics, while little attention

is given to the study of the natural linewidth of the laser. Swain [78] remedies

this situation in the late eighties when he considers the two-photon laser using

an extended Scully-Lamb theory, and focuses on calculation of linewidths and

cross-correlation coefficients. He shows that the two-photon laser is a source

of tunable, strongly positively cross-correlated light when operating well above

threshold. According to Swain,�cross-correlation is a topic of much current

interest: crudely the reason is that whilst each mode of the laser may be noisy,

the noises from the two modes may be so correlated that in an appropriate two-

photon transition they may �cancel�, leading to an almost noiseless transition�.

Ashraf and Zubairy [79] also note the resurgence of interest in studying laser

linewidths and related quantities, mainly due to the possibilities arising for

noise quenching. They evaluate the natural linewidth for a two-photon laser

based on an equation of motion for the Þeld obtained by suitably generalizing

Scully-Lamb theory.

Yang, Huang, and Hu [80] carry out a quantum theory of a nondegenerate

two�photon laser using a three-level model where all the states are the same

parity. Earlier models dealt with the problems of a two-photon laser in a two-

level scheme, and later work extended it to the three-level case. Yet few, if

any, previous studies looked at the effect of other same parity intermediate

levels on a two-photon transition, instead focusing on the enhancement effects

of opposite parity intermediate levels. Yang et al. Þnd that the radiation Þeld

displays sub-Poissonian statistics (leading to antibunching) and conÞrm that

the laser at threshold goes through a Þrst-order phase transition.
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Lu [81] takes a Q-function approach to the quantum theory of the two-

photon laser in which he employs quasiprobability distributions for the inten-

sity and phase of the laser to describe the Þeld in terms of classical numbers

rather than operators. He compares his approach with those involving the

full microscopic Hamiltonian and the effective Hamiltonian, and claims that

triggering is required to start laser oscillation only if linear gain in the laser

is less than cavity loss, differing from the effective Hamiltonian results. He

also determines that the general expression for photon number variance does

not approach a Poisson distribution as in the one-photon laser. This leads to

interesting nonclassical photon statistics, as described in the next section.

6.1.4 Non-classical light: Squeezing and Photon Statis-
tics

A great deal of interest has been generated in studying the coherence proper-

ties and photon statistics of a two-photon laser, mainly due to early predictions

of unusual behavior and the occurrence of nonclassical light. In order to bet-

ter understand these predictions, I Þrst brießy explain nonclassical light, and

squeezed light in particular. Much of the following is based upon a good review

article by Teich and Saleh [82].

The electromagnetic Þeld associated with a single mode of radiation may

be described by two independent components such as its amplitude and phase

or its cosine and sine quadratures. According to quantum mechanics and the

Heisenberg uncertainty principle, the two components cannot be simultane-

ously known with perfect precision. Yet because most usual light sources have

no preferred quadrature component, the two uncertainties are equal and in-



185

0o

90o

phase

0o

90o amplitude   
squeezing   phase 

squeezing

90o

0o

amplitude

Figure 6.1: Representation of amplitude and phase squeezing

dependently fulÞll an uncertainty relation. However the Heisenberg inequality

does not forbid a decrease in the uncertainty of either quadrature below the

given limit provided that the uncertainty of the other quadrature is increased.

Thus, for example, the amplitude noise on a beam of light may be reduced

below the Heisenberg limit, while the phase noise is correspondingly increased,

as illustrated in Fig. 6.1 Similarly, the photon number associated with a mode

may be known exactly, in which case the phase of that mode is totally uncer-

tain. Light with a minimum uncertainty product, but with an unequal distribu-

tion of ßuctuations in the two quadratures, is said to be quadrature squeezed.

Light whose photon-number ßuctuations are smaller than those of the Poisson

distribution is said to be photon-number squeezed, or �sub-Poisson�.

The statistical properties of squeezed states of light or sub-Poissonian light

Þelds cannot be calculated using techniques analogous to classical probabil-
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ity theory, requiring instead a full quantum description of the light; squeezed

states and sub-Poissonian light Þelds are hence examples of nonclassical light

Þelds. Another example of a nonclassical, or quantum, light Þeld is one which

displays a second-order coherence less than one. All existing theories that dis-

tinguish classical from quantum coherence properties depend on the degree of

second-order coherence, which is deÞned in terms of the correlation of light

intensities at two space-time points [3]. This coherence represents the nor-

malized probability of two photons arriving at a location simultaneously. A

second-order coherence greater than one indicates a high degree of correlation

and describes photon bunching, while a Þeld distribution in which the photons

are uncorrelated (second-order coherence less than one) results in anti-bunched

light. Though thermal or chaotic light has a second-order coherence greater

than one and hence displays bunching, this coherence doesn�t violate any clas-

sical inequalities and hence remains a classical light source. A second-order

coherence less than one, however, violates classical inequalities and represents

quantum light.

Quantum light may be quadrature-squeezed, have sub-Poisson statistics,

or have a correlation function less than one. A fairly general relationship

between photon-number squeezed light and anti-bunched light exists, in that

if the variance of the number of counts is in excess of that given by the Poisson

distribution, photons do not arrive at random, but are bunched. On the other

hand, if the variance is less, the photons exhibit anti-bunching. There is not,

however, a general relation between anti-bunching and quadrature-squeezing.

Quantum states may exhibit anti-bunching but not squeezing, and only some

squeezed states exhibit sub-Poissonian photon statistics and hence photon anti-
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bunching.

Ideal (one-photon) lasers emit coherent light, which has quadratures whose

ßuctuations are equal and satisfy the minimum product permitted by the un-

certainty principle. The photon-number ßuctuations of such coherent light are

governed by the Poisson distribution, in which the ßuctuations in the number

of photons is equal to the square root of the photon number. A typical laser

also has a second-order coherence exactly equal to one. Typical laser light does

not display bunching or squeezing of laser photons.

Squeezed light in particular proves quite exciting to researchers, mainly due

to its noise reduction characteristics. Recent improvements in noise reduction

techniques have created a situation in which quantum noise is frequently dom-

inant over other noise sources in optical communications. If one can generate

states with a quantum noise smaller than a coherent state (the output of typical

lasers), such states could be proÞtably used in many applications. The two-

photon laser is a candidate to produce the purely quantum effects of squeezing

and antibunching. Yuen [83] points out that two-photon coherent states �

speciÞcally the radiation states of ideal monochromatic two-photon laser oper-

ating far above threshold � have novel characteristics that may lead to potential

device applications in both quantum noise reduction and experiments requir-

ing low noise sensitivity. Hirota [84] carefully looks at the theoretical quantum

noise properties of a two-photon coherent state (generated by the ideal two-

photon laser) and Þnds that optical communication by two-photon lasers has

certain advantages over that by conventional lasers, since no increase in uncer-

tainly occurs in the measurement or detection process. Employing two-photon

coherent states as the transmission states in optical communication minimizes
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error probability and improves reliability. Rowe [85] approaches the problem

quite differently, yet also predicts that the coherence properties of a two-photon

laser are quite different from the standard laser and may display nonclassical

effects, such as squeezing. In the pulse mode, two-photon lasers might also

display pulse shortening behavior [86] not found in the one-photon case.

Soon after these Þrst exciting papers appeared, however, the predictions of

novel noise characteristics became contradictory and critically dependent upon

the model used to describe the two�photon laser. Golubev [87] uses perturba-

tion methods to investigate the quantum statistical properties of a two-photon

laser when the cavity loss mechanism is simulated by a single photon process.

He does not Þnd qualitative differences between the photon statistics of a one-

photon laser and a two-photon laser. Lugiato and Strini [88] systematically

investigate two-photon optical bistability and two-photon lasing in a ring cav-

ity. Again, contrary to expectations, no squeezing is found for a two-photon

laser in the good cavity (high-Q) limit. A later study by Reid and Walls

[89] that approaches the problem quite differently conÞrms this Þnding. Both

of these papers model a two�photon laser using two-level atoms interacting

via a two-photon transition with a single resonant-cavity Þeld mode. Since

a squeezed state is generated via a quadratic interaction of the electric Þeld,

the quadratic nature of a two-photon interaction makes a two�photon laser a

prime candidate to exhibit reduced quantum ßuctuations in one quadrature

of the output Þeld. However, both these papers show that an incoherently

pumped laser will not generate squeezed states of light.

The controversy over the squeezing characteristics of a two-photon laser

continues through the early eighties as a ßurry of papers predicting that any
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intrinsic squeezing will be destroyed by spontaneous emission events due to

the phase insensitivity of the resulting ßuctuations. Scully et al. [90] study

the noise properties of a two-photon correlated-spontaneous emission laser, a

coherently pumped two-level two-photon laser in which the two-photon transi-

tion is driven by atoms injected into the cavity in a coherent superposition of

the levels involved in the lasing transition. They show that this laser displays a

reduction in spontaneous emission ßuctuations and predict that it will exhibit

net gain and phase squeezing simultaneously. In another nonlinear theory of

the two-photon correlated-spontaneous-emission laser, Lu et al. [91] predict

that the injected atomic coherence leads to stable phase locking and squeezing

of the quantum noise in the phase quadrature of the laser light. Majeed and

Zubairy [92] go on to show that even for very large phase ßuctuations in the in-

jected atoms, close to 50% phase squeezing can be achieved in the two-photon

correlated-spontaneous-emission lasers. A recent paper also by Majeed and

Zubairy [93] studies a two-photon phase sensitive ampliÞer, which responds

differently in terms of gain or noise to the phases of the two light quadratures.

An ideal phase-sensitive ampliÞer has previously been shown to display phase

squeezing, and they extend the results to the realistic case where the driving

Þeld is modiÞed by phase ßuctuations. Fluctuations are shown to reduce, but

not destroy, the squeezing.

All of these early papers deal with the case of zero detuning in the laser,

and Hu and Sha [94] Þrst study the inßuence of detunings on the squeezing

effect in 1991. They Þnd that in the good cavity limit a squeezed state may

exist in two-photon laser in the off-resonance condition. A paper by Savage and

Walls [95] examines the squeezing spectrum for a cavity Þeld mode interacting



190

with an ensemble of three-level atoms by an effective two-photon transition.

A three-level, rather than two-level, system as the squeezing medium has the

advantage that the nonlinearity is not due to atomic saturation (which leads to

spontaneous emission, a source of noise that destroys squeezing). This three-

level nonlinearity allows them to Þnd good squeezing in systems with dispersive

bistability. In fact, they predict perfect squeezing at the turning points of

dispersive optical bistability generated by two-photon transitions.

The predictions of squeezing in a two-photon laser have come full circle.

Although Þnding squeezed states in a two-photon laser is no longer expected

to be as simple or automatic as it was once believed to be, the general consensus

is that squeezing is theoretically possible in a two-photon laser under certain

resonance and cavity conditions. Whether these conditions are experimentally

realistic remains to be determined.

Over the years, a number of differing predictions concerning the photon

statistics of a two-photon laser have also been proposed. It is fairly well ac-

cepted that the statistical properties of two-photon laser light will display quan-

tum behavior, yet identifying the exact behavior seems quite difficult. Using a

Scully-Lamb detailed-balance laser model, McNeil and Walls [56] predict that

photon distribution functions of a two-photon laser are narrower (sub-Poisson)

than in the single photon laser. Relaxing the detailed balance restriction, how-

ever, yields two-photon lasers which demonstrate no signiÞcant difference in

statistics from one-photon lasers. In a later paper [96] they show that the Þeld

produced by two-photon spontaneous emission into a vacuum has a second-

order correlation function greater than two, thus offering the possibility of ob-

serving photon bunching. However, with an initial Þeld present either bunching
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or antibunching effects can be seen!

The confusions only get worse from here. Zubairy [97] investigates the two-

photon laser with a single photon process as the cavity loss mechanism in the

model. He Þnds the photon distribution function for a two-photon laser to be

wider than a Poisson distribution, differing from McNeil and Walls [56] and

other previous expectations. Bandilla and Voigt [98], like Zubairy, claim that

models in which the losses at the mirrors are due only to two-photon absorption

are unrealistic since photons do not escape in pairs, and such nonphysical

models may modify the predicted statistics. They claim that under the proper

circumstances, a two-photon absorber can bring an arbitrary Þeld state into

one displaying photon anti-bunching, and only a careful, realistic laser model

can overcome these difficulties. They use a reasonable model in which single-

photon absorption accounts for losses and Þnd a photon distribution which

displays small bunching and super-Poisson statistics.

A second paper by Zubairy [99] predicts that two-photon lasers display

a non-classical second-order coherence, which is expected to result in photon

bunching. A paper by Sharma and Brescansin [100] includes the effects of co-

operative atomic interactions in their study of the statistics of a two-photon

laser and Þnds nonclassical behavior qualitatively similar to that already de-

scribed, though their quantitative results differ slightly. A further study of

photon statistics and coherence properties by Lu [101] compares predicted re-

sults for an exact versus effective interaction Hamiltonian and catalogues the

regions in which they agree. Bay and Lambropoulos [102] study the photon

distribution of a two-photon laser and carefully account for the effects of the

dynamic Stark shift. They reproduce the result that a two-photon laser with
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no Stark shift and no detuning results in a super-Poissonian photon distribu-

tion. They go on to show that when a detuning is introduced in the case of

a strong dynamic Stark shift, the statistics of the photon distribution changes

from super-Poissonian to sub-Poissonian.

In summary, although the photon statistics of a two-photon laser are ex-

pected to differ from a one-photon laser, whether the new photon number

distribution broadens or narrows, and how the second-order correlation func-

tion changes, is again critically dependent on which features are incorporated

into the two-photon laser model. Only tests done on a two-photon laser itself

will satisfactorily determine these outstanding questions.

6.1.5 Bistabilities and Instabilities

There is a great deal of breadth and vigor within the Þeld of nonlinear op-

tics studying instabilities in active optical media. Just as squeezing and non-

Poisson statistics attest to nonlinearities in an optical system, novel stability

properties are another indication of interesting nonlinearities. Many of the sta-

bility properties of typical laser systems have been familiar to the experimen-

tal physicist since the early days of the laser, and mathematical developments

in the study of nonlinear dynamical phenomena allowed these instabilities to

be extensively studied. Similar theoretical studies on two-photon lasers would

prove useful in understanding these novel quantum oscillators. The two-photon

laser is expected to have nonlinearities quite different from, and far more com-

plicated than, those of the one-photon laser due to the absorption and stimu-

lated emission of two photons simultaneously in the ampliÞcation process.

Abraham, Lugiato, and Narducci [103] present a nice overview summarizing
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the general methodology used to analyze instabilities in laser systems. Nearly

all laser models, including two-photon laser models, derive their theoretical

framework from coupled differential equations whose solutions can be viewed

as trajectories in the phase space of the dynamical variables. When working

with continuous-wave lasers, steady-state solutions to these equations are used

to determine long-term laser behavior. A standard linear stability analysis2

determines which of these steady-state solutions are realized in the system �

only the stable solutions represent physical laser outputs.

Abraham et al. [103] apply the above procedure to look at the steady-state

solutions for the degenerate two-photon laser. Their basic results are generally

agreed upon and deserve a quick summary before mentioning the independent,

and often controversial, results presented by a number of authors. Solutions for

the mean photon number and inversion in a two-photon laser as a function of

pumping are, in general, given by a trivial solution (nonlasing; zero-intensity)

and a pair of nontrivial solutions as shown in Fig. 6.2. Irrespective of pumping,

the trivial solution is always stable3, though two-photon spontaneous emission,

neglected here due to its small probability of occurrence in the optical regime,

can destabilize this solution. The two nontrivial solutions exist only above a

certain value of the pump parameter, and for one the intensity of the solution

grows with the pump parameter, while it decreases for the other. The negative

slope portion of the steady-state curve is always unstable, so only the upper-

branch (lasing) intensity is considered in most treatments. The stability of this

2Details of a standard linear stability analysis are explored in Chapter 3, where such an
analysis is performed on a rate-equation model of two-photon lasers.

3In fact, even this is not universally agreed upon. Using a full microscopic Hamiltonian,
Boone and Swain [75] Þnd the solution at the origin to be unstable above threshold.



194

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

Pump rate (arb. units)

Ph
ot

on
 n

um
be

r
(a

rb
. u

ni
ts

)

Figure 6.2: Steady-state behavior in the two-photon laser

branch varies with the pump parameter, and bistability between the zero- and

upper nonzero-intensity solution, which only meet at inÞnity, will occur when

the upper branch is stable.

Most researchers use the conventional linear stability analysis when ap-

proaching a theoretical examination of the stability of two-photon lasers and

predict differing results simply because of different effects included in the in-

dividual laser models. Ito and Nakagomi [104] study the two-photon laser

oscillation process and Þnd the possibility of a Þrst-order phase transition at

threshold, as evidenced by their solutions for the complex amplitude of the

Þeld. Though many early stability analyses look only at the photon Þeld, Ito

and Nakagomi also explore the inversion. The solutions to the system of equa-

tions describing both the photon Þeld and inversion are threefold, as described

above. The upper branch stability condition depends on the relative magni-
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tude between the photon and atomic decay rates, and has no counterpart in

the single photon laser.

Reid, McNeil and Walls [7] present a uniÞed approach to n-photon transi-

tions which can occur in an optical cavity Þlled with two-level atoms. Their

formalism describes the n-photon laser, the n-photon laser with injected Þeld,

and n-photon optical bistability, and they derive the state equations and sta-

bility conditions for each of these processes using a treatment similar to that of

Sczaniecki [71]. They perform explicit calculations of semiclassical and statis-

tical laser properties and Þnd the two-photon laser to be bistable, resulting in

a need for ßuctuations or an injected trigger to make the transition to lasing.

Ning and Haken [105] author a number of papers concerning the dynamic

behavior of the effective Hamiltonian two-photon laser. They systematically

study the stability of the stationary states in the two-photon laser, and re-

produce the now-familiar trio of stationary solutions. They Þrst look at the

mathematically simpler case of perfect tuning, then relax this restriction to

study how unavoidable detunings [106] inßuence the stability of the two-photon

laser. They show that the stability of the trivial solution is responsible for the

bistability of the system between the trivial and nontrivial solutions near the

lasing threshold. They also show that one of the nontrivial states is always

unstable, and the stability of the other depends on whether the cavity is good,

giving regions of stability, or bad in which case it is always unstable. Recall

that a good cavity is one in which the cavity lifetime is much larger than the

atomic lifetime. For an intermediate cavity, a linear stability analysis shows

the existence of a self-pulsing instability that occurs through a Hopf bifurcation

at a critical pump parameter, and they perform both an analytic and numeric
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nonlinear analysis about this instability point [107]. The most interesting fea-

ture of this Hopf bifurcation is that, in opposition to the majority of lasers,

the laser is stable for pump values larger than (and unstable for values smaller

than) that corresponding to the bifurcation point. Finally, they also perform

a preliminary study of the phase dynamics of a two-photon laser [108].

In a paper on generating ultrashort pulses using two-photon gain, Heatley

et al. [109] carry out a stability analysis on the two-photon laser in the bad

cavity limit, and Þnd an instability in the two-photon continuous-wave Þeld

while the pulsed Þeld remains stable. Wang and Guan [110] discuss instability

and chaotic phenomena in the two-photon laser with injected signal for a ho-

mogeneously broadened single-mode ring-cavity laser. They observe not only

steady state and periodic motion, but also chaos and hyperchaos.

Roldán, de Valcárcel and Vilaseca [111] study the operational conditions

and stability of a degenerate two-photon laser. They adopt a semiclassical

laser model based on a microscopic three-level Hamiltonian, and investigate

the inßuence of a nonresonant intermediate level on the emission conditions

and stability of a two-photon laser. Their model generalizes previous effec-

tive Hamiltonian models since it retains information about the intermediate

level through parameters describing atomic population and frequency shifts.

In their analysis they describe two important features of the two-photon laser:

(i) the absolute stability of the trivial solution with the consequent necessity

of triggering; and (ii) the existence of a Hopf bifurcation that destabilizes the

steady lasing solution. A follow-up paper by de Valcárcel, Roldán, Urchuegúõa,

and Vilaseca [112] extends the analysis by allowing for both degenerate and

non-degenerate cases, analyzes the stability of the Hopf orbits, and numeri-
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cally investigates the global dynamic behavior of the two-photon laser. Both

papers concentrate on the inßuence of the intermediate-state parameters on

the stability and dynamical properties of the two-photon laser.

Ovadia and Sargent [113] are among the few researchers not to use the

conventional linear stability analysis, but rather study two-photon lasers using

the �weak-sideband� approach, a common and intuitive approach taken when

dealing with one-photon lasers. For one-photon lasers both approaches tend to

yield the same instability boundaries, and this seems to be true for two-photon

lasers as well. In the weak-sideband method, an instability is primed by the

emergence of symmetric sidebands around an existing oscillating signal. This

causes the output intensity to lose its stationary character and acquire an am-

plitude modulation, or instability. Ovadia and Sargent [113] study the buildup

of sidemodes and sidemode instabilities in the two-photon laser, and Þnd a

two-photon laser, like a one-photon laser, becomes unstable if the sidemodes

have positive net gain. Single and multiwavelength instabilities in two-photon

laser operation are shown to occur. A later paper by Ovadia, Sargent, and

Hendow [114] extends the theory and performs a preliminary investigation on

the inßuence of AC-Stark shifts on two-photon laser dynamics.

6.1.6 Recommended reading

As has become evident, the two-photon laser models employed by different

authors vary signiÞcantly. For the reader unfamiliar with the myriad of theo-

retical work that has been done, it proves helpful to try to point them to one

or two reasonably good, reasonably complete theoretical papers as references.

For a semiclassical theory, I recommend the related treatments by Roldán et
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al. [111] and Vilaseca et al. [112] They present a three-level model of the two-

photon laser, look at both the degenerate and non-degenerate cases, and retain

important information about AC-Stark shifting of atomic levels and population

induced level shifting. They perform a careful analysis of the laser�s stability

properties, and study the effects of laser Þeld detunings on laser behavior.

One notable deÞciency of this model (and all other two-photon laser models

already discussed) is that it allows incident laser Þelds to interact only on a

single atomic transition, whereas in physical systems a Þeld often interacts on

two or more transitions. In addition, because the model is semiclassical, by

deÞnition it cannot predict or explain the laser�s quantum properties, including

possible squeezing and non-classical photon statistics.

Papers dealing with the quantum aspects of the laser tend to be more

specialized and more technically difficult to decipher, but they do predict laser

qualities not available to a semiclassical analysis. I hesitate to recommend

many quantum treatments of the two-photon laser, mainly because of their

usual notation: they bandy about a and a� terms as if every optical physicist

has been familiar with these quantities since junior high-school. Wang and

Haken [66] present one reasonable quantum theory of two-photon lasers. They

treat the dynamics and stability of a two-photon laser near threshold and the

inßuence of noise characteristics. They consider both degenerate and non-

degenerate lasers, and study the need for and effect of a trigger to initiate

lasing. This is a wonderful initial treatment of the laser, useful as a starting

point for more detailed treatments. Its most obvious deÞciencies, however,

include the fact that incident Þelds are again only allowed to interact on a

single atomic transition, and parts of the treatment require a high-Q cavity
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and relatively weak electromagnetic Þelds.

Another fairly general quantum theory, which takes a different approach

than that of Wang and Haken, is that by Boone and Swain [75]. Like the

semiclassical theory described above, their density-matrix approach includes

the effects of AC-Stark shifts and intermediate state frequency shifts. They

include effects of cavity detunings, look at steady-state solutions, and perform

a careful a stability analysis. Their treatment does not, however, consider the

laser�s dynamical properties.

The models presented in Ref. [75] and Ref. [111] are both equivalent to

the dressed-state two-photon laser model presented by Zakrzewski et al. [115],

which is further described in Sec. 6.2.3. This proves both convenient and

useful, as the dressed-state treatment models the experimental situation used

in the only realization of the two-photon laser to date.

6.2 Experimental Progress

Despite the wealth of literature, it should have become clear that there are

various two-photon laser models which lead to contradictory predictions and

confusions, and yet still leave large gaps in our knowledge. Perhaps the most

straightforward way to resolve these confusions and contradictions is through

experimental investigations on two-photon stimulated emission and gain, and

the experimental realization of a two-photon laser. A few of the more important

experimental papers in this quest are mentioned below.
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6.2.1 Early Experimental Work

Early experiments focused on observation of two-quantum effects, including

two-photon ionization, absorption, enhanced emission, and stimulated emis-

sion. In 1966, Hall observed what appeared to be one of the Þrst genuine

two-photon ionization signals. He calculated the two-quantum photoionization

rate for atomic cesium, and observed ionization both when the laser was tuned

to the two-photon resonance and when it was off-resonance. Two years later,

Yatsiv et al. [116] observed enhanced two-photon emission between the 6S

and 4S states of potassium atoms. Enhanced emission ampliÞes incident laser

radiation without requiring inversion between the populations of the emitting

atomic states, and serves as a precursor to true stimulated two-photon emis-

sion. Only two years later, Bräunlich and Lambropoulos [117] report on the

observation of singly stimulated two-photon emission from metastable deu-

terium atoms. Due to an absence of real intermediate states, the de-excitation

occurs via an unambiguously two-photon process.

Bethune, Lankard, and Sorokin [118] study two-photon emission cross-

sections for the metastable c3Πu → b3Σ+u transition in H2. Despite extremely

small cross-sections for emission, they believe these difficulties can be overcome,

and molecular hydrogen presents a good candidate for a two-photon ampliÞer.

Loy [119] reports an early experimental observation of adiabatic population

inversion in a two-photon transition, demonstrated through two-photon stim-

ulated emission and gain in ammonia. Although the two-photon gain is quite

small and only a transient effect, this represents one of the Þrst reports of

two-photon stimulated emission and gain, and is a step forward in the quest

to achieve two-photon laser oscillation. Gao [120] et al. look at two-photon
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stimulated emission between two excited states of the same parity in sodium.

Sodium appears a better gain medium than ammonia due to the relatively

higher energy storage in the excited sodium. Schlemmer, Frolich, and Welling

[121] direct their interests toward Þnding continuous-wave two-photon gain

since two-photon transient gain has been achieved. They observe stimulated

two-photon emission in an incoherently pumped continuous-wave three-level

cascade He-Ne laser. Qualitative agreement between the experimental results

and a three-level rate-equation model is found.

Nikolaus [42] et al. report the observation of two-photon emission in atomic

lithium vapor pumped by two counterpropagating laser beams, and apparent

two-photon gain in a third beam probing the transition. There is some con-

troversy [122], however, that competing nonlinear effects such as multiwave

mixing are the origin of the observed enhancement. This sets a precedent

forcing experimental papers to carefully distinguish between true two-photon

type gain and wave-mixing type gain in some way (e.g. by using phase match-

ing constraints to preventing wave mixing, or by ensuring the existence of a

two-photon population inversion).

Though most investigations of two-photon gain concentrate on atomic me-

dia and optical pumping, Ironside [123] proposes semiconductors as a two-

photon gain medium. Unfortunately, few (if any) experiments have been per-

formed to test this new approach. Semiconductors have the advantages that

two-photon effects are well understood and that semiconductor technology is

a well-developed Þeld, so material adaptation for our present purposes should

not be difficult. A severe disadvantage, however, is that nonlinear processes

which compete with two-photon gain are often prevalent in solid state media.
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Normal one-photon lasing would completely overwhelm any two-photon lasing,

and must be prevented for semiconductors to be a useful gain medium.

The work by Grynberg et al. [124] in which they report on a two-photon

optically pumped laser also deserves mention. Some authors reference this as

the Þrst experimental observation of two-photon lasing. A careful reading,

however, demonstrates that this is not the case. The system they discuss

consists of a rubidium atom in which one creates a population inversion between

two excited states by means of a two�photon excitation process. Normal, one-

photon, laser emission is then possible between these two levels.

Bethune et al. [118] ascribe the limited success toward the realization of a

two-photon ampliÞer to difficulties in Þnding a suitable transition (which has an

intermediate state for enhancement, yet avoids cascade de-excitations through

this state), troubles in creating signiÞcant population inversions between the

transition levels, and the need for an extremely high intensity beam to trigger

the two-photon emission. Although different materials and transitions have

been studied in the quest to overcome these difficulties, signiÞcant success

toward two-photon ampliÞers and lasers is achieved only when two-photon

emission is considered from an entirely different perspective.

6.2.2 Two-Photon Micromaser

For many years experimental difficulties related to low two-photon gain in the

usual transitions and competing nonlinear optical effects prevented the realiza-

tion of a continuous-wave two-photon oscillator. In the mid-eighties, Haroche

et al. [24, 125] realized that Rydberg atoms in a high-Þnesse superconduct-

ing cavity can be effectively used to overcome these difficulties and construct
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a two-photon maser. Rydberg atoms, highly excited atoms with properties

and radiation effects very different from atoms in low-lying states, are ideal for

observing simple atom-cavity quantum dynamical effects [126]. They strongly

couple to the radiation Þeld owing to their large matrix elements for transitions

to neighboring levels, and the transitions are in the region of millimeter waves,

allowing construction of cavities with low-order modes that are reasonably large

in order to insure long interaction times. The atoms also have long sponta-

neous emission times, so only the interaction with the selected cavity mode is

important, and coupling of atoms to other cavity modes can be neglected.

Rydberg atoms� long wavelengths and large electric dipole moments make

it possible to construct cavities that can oscillate with only one atom and a

few microwave photons inside it at any time. The extremely low intracavity

intensities tend to prevent destructive nonlinear effects from dominating the

interaction. Rydberg atoms can also greatly enhance the two-photon transition

amplitude if one chooses a two-photon transition such that an intermediate

level can be found in the Rydberg state spectrum nearly halfway between

the initial and Þnal states. Using an extremely high Þnesse cavity serves to

prevent unwanted resonance effects from occurring even when tuned very near

the intermediate state. These ideas are successfully used in the Þrst quantum

oscillator based upon two-photon stimulated emission of radiation � the two-

photon micromaser [25]. The micromaser displays sustained continuous-wave

oscillation in a high Þnesse (' 108) niobium superconducting cavity on the

degenerate 40S → 39S two-photon transition in rubidium. This extraordinary

experimental accomplishment is a breakthrough in the quest for novel light

sources, and shows promise for the eventual realization of a two-photon laser.
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6.2.3 Dressed-State Lasers

As mentioned earlier, the greatest experimental problem in building a two-

photon oscillator is the small two-photon gain in most normal systems. The

two-photon micromaser overcame this difficulty by using Rydberg atoms with

an intermediate state to enhance the gain without increasing the effects of

competing processes. Although this worked splendidly, the technique cannot

be expanded into the optical regime. The breakthrough for the realization

of a two-photon optical quantum oscillator required an innovative two-photon

gain medium with similar idealized properties � a driven-atom gain medium.

The new concept for optical two-photon gain is based on the idea that it is

possible to �engineer� a near-ideal two-photon gain medium consisting of two-

level atoms (one-photon transition) driven by an intense, near-resonant laser

Þeld � a so-called dressed atom [17].

Over twenty years ago it was predicted [127] and later observed [128]

that the spectrum of the radiation scattered by a two-level atom driven by

an intense, resonant, monochromatic laser Þeld displays three peaks (Mollow

triplet). Soon after the Þrst experimental observation of strong-Þeld resonance

ßuorescence, Cohen-Tannoudji and coworkers [129] introduced the dressed-

atom states to explain this triplet. The dressed-atom states are simply the

energy eigenstates of the combined atom and strong driving Þeld, derived by

ignoring the interaction between the two-level atoms and all radiation modes

except the single, highly-occupied mode of the driving Þeld. In the dressed-

atom representation, each peak of the Mollow triplet is then interpreted as

arising from spontaneous emission events between the various dressed-atom

states.
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Figure 6.3: Standard dressed-states for a two-level atom driven at the frequency
ω

Dressed-atom representation is quite useful in describing the interaction of

intense laser Þelds with matter because it accurately describes the coupling of

the atom to the Þeld, which occurs in such a way that the energy-level and

resonance structure of the atom is modiÞed due to the laser-Þeld induced Stark

shifts. The standard dressed-state energy levels are described by an inÞnite

ladder of doublets split by the generalized Rabi frequency Ω0 and separated by

the laser frequency ω as shown in Fig. 6.3. A nonzero detuning of the driving

Þeld from the atomic transition frequency results in a population imbalance

between the dressed-state doublets. In particular, for the case of red detuning

the lower levels of each doublet have larger populations. For transitions α and

β between dressed levels indicated in Fig. 6.3, this imbalance is then equivalent

to a population inversion and optical gain can occur. Transition α illustrates
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an inverted one-photon transition at a frequency ωL = ω − Ω0. Laser pumped
two-level atoms thus comprise a composite gain medium in which the gain is

essentially identical to the familiar one-photon gain. Several researchers have

successfully utilized this similarity and constructed one-photon lasers using

dressed atoms [130].

Dressed-state gain is not limited to single photon transitions; in fact, an

intense probe beam can induce multiphoton transitions among the dressed lev-

els. Dressed-state atoms provide a near ideal two-photon gain medium in which

the two-photon resonances are strongly enhanced by the intermediate dressed

states, as illustrated by transition β in Fig. 6.3. Transition β illustrates an

inverted two-photon transition at frequency ωL = ω − Ω0/2. The energy levels
and splittings (and hence the resonance frequencies) are also, to some extent,

tunable. Lewenstein, Zhu and Mossberg [131] predict that a collection of atoms

strongly driven by a laser Þeld displays two-photon gain and can support two-

photon lasing. They describe the origin of gain in terms of inverted two-photon

transitions between dressed atomic states. Zhu et al. [17] then experimentally

observe a two-photon gain feature in the strong-probe absorption spectrum of

a driven two-level atom. Zakrzewski, Lewenstein, and Mossberg [115] perform

a careful theory of dressed-state lasers in which they derive stability conditions

and determine laser threshold conditions which should be experimentally veriÞ-

able. They examine the quantum-statistical properties of both one-photon and

two-photon dressed-state lasers, and the consequences of pump depletion on

both the stability properties and statistical properties of the lasers. A further

analysis by Lewenstein et al. [132] extends the theory to the bad-cavity limit,

accounting for competition between one-photon and two-photon processes, and
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Figure 6.4: Schematic representation of the two-photon dressed-state laser

show that high-order instabilities and chaos might appear.

Gauthier, Wu, Morin, and Mossberg [18] report the Þrst realization of

a continuous-wave two-photon optical laser. They use dressed-atom energy

eigenstates as their two-photon gain medium, guaranteeing relatively strong,

near resonantly enhanced, degenerate two�photon transitions. The two-photon

laser consists of an atomic beam of barium atoms driven by another laser beam

as it passes through the center of a confocal cavity, as shown in Fig. 6.4. They

isolate the laser gain from competing one-photon processes using a high-Þnesse

optical cavity. The mutually orthogonal geometry of the laser beams both

prevents wave-mixing type processes from being phase matched for emission

into the cavity modes and provides nearly Doppler-free atom-pump and atom-

cavity interactions. They carefully characterize the dressed-atom laser system
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and observe a pronounced, intensity-dependent gain feature at the predicted

location for two-photon gain. Using an externally injected trigger-pulse, they

initiate two-photon lasing and Þnd the experimental threshold conditions to be

in good agreement with theoretical predictions. Over twenty-Þve years after

the two-photon laser was Þrst theoretically described, Gauthier et al. con-

clusively demonstrated two-photon optical lasing! Like the two-photon maser,

realization of the two-photon laser is an impressive experimental breakthrough,

but it is by no means the end of the story.

6.2.4 Raman Lasers

Despite the successes in realizing the two-photon maser and the dressed-state

two-photon laser, a great deal of further work needs to be done in the detailed

study of the properties of continuous-wave two-photon optical lasers. Masers,

by deÞnition, operate at microwave frequencies and hence have properties quite

different from lasers, which operate at optical frequencies. Their long wave-

lengths and low photon energies mean that the particle-like nature of the light

output from a two-photon maser is very difficult to measure. Unlike the optical

regime where individual photons give a measurable detector response, in the

microwave regime thousands or millions of photons are needed to produce the

same response. This makes any study of the photon statistics or cavity photon

numbers a difficult, though not insurmountable, proposition. These difficulties

limit any beneÞts that studies of the two-photon micromaser can offer in terms

of studying a two-photon laser.

The small gain observed in the two-photon dressed-state laser (∼ 0.1%),

and the fact that the experimental apparatus worked near its theoretical limits,
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Figure 6.5: Raman scattering as a mechansim for gain

restricts its usefulness for careful, long-term studies of its properties. As a

result, the main research directions in our lab are: (i) to thoroughly characterize

two-photon lasers; and (ii) to develop new types of two-photon gain media, both

in order to make two-photon lasing easier and in order to distinguish between

the properties two-photon lasers in general and those that are speciÞc to a gain

medium. Guided by the concept underlying dressed-state two-photon lasers,

we have discovered a new type of two�photon gain medium in which the gain is

derived from two-photon, near-resonant Raman scattering between bare atom

states of a multi-level atom.

Typical Raman gain arises from near-resonant scattering of laser photons

from a three-level atom as shown in Fig. 6.5. This process ampliÞes the ra-

diation at the frequency ω if state | ci is more populated than state | ai.
In a 1985 experiment unrelated to Raman gain, Kumar and Shapiro [34] ob-

serve unexpected laser oscillation in the sodium D lines when pumped by a

continuous-wave dye laser and placed in an optical cavity. The oscillation is

detuned from the pump laser by the ground state hyperÞne splitting of sodium.

After some study, they conclude that gain results from optical pumping and
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stimulated Raman scattering. This is the Þrst demonstration of the Raman

laser.

Raman lasers have since become relatively standard laboratory tools, and

are even used as pump lasers in a variety of nonlinear optical experiments.

However, no attempt (to our knowledge) has been made to build Raman lasers

based upon hyper-Raman processes. At high intensities, new features appear

in the absorption spectrum of a Raman-active medium at subharmonics of

the Raman difference frequency [133]. The fact that these are high-order gain

features was not fully appreciated until recently � the early studies called them

simply �subharmonic resonances�.

Very recently Hänsch et al. [134] observed unique resonances in the absorp-

tion spectra of three-dimensional optical lattices which they attribute to mul-

tiphoton Raman transitions between vibrational states of the trapped atoms.

Although the gain is small and not well resolved, this is to our knowledge

the Þrst published work explicitly identifying ampliÞcation due to what we

call two-photon stimulated Raman scattering. Two-photon Raman scattering

involves two photons from the pump laser and two from the probe laser in

making the transition from the initial vibrational state to the Þnal state via

a virtual state. The basis of this thesis is the observation of very large gain

attributed to a similar effect � two-photon stimulated Raman scattering in a

strongly driven potassium vapor. Future work intends to use this gain to build

the Þrst two-photon Raman laser.



Chapter 7

Rate-equation model of two-photon
lasers

To date, our efforts in the laboratory have focused on constructing an effec-

tive two-photon ampliÞer. Future work will concentrate on construction of

a two-photon laser. Two-photon lasers are predicted to have a number of

novel characteristics that interest researchers and deserve further study. Yet

modelling the behavior of such lasers is challenging, mainly because they are

based on the two-photon stimulated emission (SE) process and hence operate

in a highly nonlinear manner under all conditions. Like the semiclassical two-

photon ampliÞer theory described in Chapter 5, a laser theory would need to

incorporate all of the ampliÞer effects, in addition to oscillator effects such as

cavity-atom interactions and cavity losses. The propagation effects neglected

in Chapter 5 also become a critical component in a description of an oscillator.

Theories of two-photon lasers have been developed in the past, but as we

discovered in the last chapter most of the theories are mathematically quite

complicated, often to the point that they begin to lose sight of the physical

properties and laser dynamics that the equations themselves describe. We have

211
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developed [65] a model for two-photon lasers based on a set of self-consistent

rate-equations that predicts many of their crucial attributes without being

overly complex. In this chapter, we present our rate-equation model and use

it to make predictions of the behavior of two-photon optical lasers. We feel

that our model is useful for developing an intuitive understanding of two-

photon lasers, although more complete treatments which include interactions

ignored in our rate-equation model, such as coherent effects [7, 105], single

photon processes [9], and dynamical Stark shifts [135], may be needed to make

quantitative comparisons with experimental results.

7.1 One-photon rate equations

Rate-equations provide the standard textbook approach to continuous-wave

and transient behavior [136] for one-photon lasers. To our knowledge, however,

this work is the Þrst that uses them to model two-photon laser behavior. In

the rate-equation approximation, laser equations are derived based on the idea

that there is a balance between the rate of change of total population in the

atomic system and the total number of laser photons. This is schematically

indicated in Fig. 7.1, where levels a and b represent atomic energy levels and

the black dots represent the populations in those levels. If an atom de-excites

through a transition from level b to level a, the energy difference is balanced

through the emission of a laser photon. Similarly, the absorption of a laser

photon will transfer a single atom from level a to level b.

The main approximation in the rate-equation formulation stems from ignor-

ing coherent effects. This approximation is valid only when the energy relax-

ation time 1/γ and cavity decay time 1/γc are long compared to the dephasing
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Figure 7.1: Energy balance between atomic inversion and Þeld photons

time of the system, which turns out to be true for most laser transitions. When

coherent effects are ignored, the dynamical equation for the coherences present

in a full laser treatment can be adiabatically eliminated1, signiÞcantly simpli-

fying the laser model. A further approximation in the rate-equation treatment

is that they generally do not account for propagation effects, and so do not

consider the possibility that photons created in one part of a gain medium can

stimulate more transitions further downstream. Before discussing the details

of our rate-equation model of two-photon lasers, it seems useful to provide a

context with which to compare the basic laser equations and predicted behav-

ior. Toward that end, we brießy summarize some of the well known results

that stem from a rate-equation model of one-photon ampliÞers and lasers.

7.1.1 AmpliÞer model

In an ampliÞer, no cavity is present and hence no cavity or oscillation effects

need to be taken into account. For consistency with rate-equation models

which ignore propagation effects, we study ampliÞcation in an optically thin

medium where propagation effects are negligible. The ampliÞer is modelled as

1Adiabatic elimination involves eliminating the atomic variables from the equation of mo-
tion for the Þeld when (as in many laser systems) the state of the laser Þeld varies little
over the interaction time with the atom.
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a thin slab of gain medium (a collection of two-level atoms with an external

pump process creating an inversion) with some number of photons q incident

upon it as shown in Fig. 7.2a. By the assumption of an optically thin medium,

the photon number q remains constant throughout the ampliÞer, so we only

need to explore how the population inversion density between the two active

levels changes in time. This is modelled by the equation

d∆N

dt
= −2B(1)q∆N − γ(∆N −∆No) , (7.1)

where B(1) is the one-photon rate coefficient, B(1)q is the one-photon stimulated

emission rate, γ is the population decay rate, ∆No is the inversion in the

absence of the Þeld due to the pump process, and γ∆No is the pump rate.

Physically the terms in this equation account for, respectively, a decrease in

the inversion due to stimulated emission and spontaneous emission, and an

increase due to pumping. These processes are schematically indicated in Fig.

7.2b.

For an ampliÞer, the steady-state response of the medium is found as the

time-independent inversion, yielding

∆Nss =
∆No

1 + 2B(1)q/γ
=

∆No

1 + q/q
(1)
sat

, (7.2)

where we have deÞned the one-photon saturation photon number

q
(1)
sat ≡

γ

2B(1)
. (7.3)

The one-photon saturation photon number is generally quite large2. The

steady-state inversion in the one-photon ampliÞer given by Eq. 7.2 can also be

2For a typical HeNe laser, we can estimate q
(1)
sat as follows: q

(1)
sat = γ/2B

(1) = Vcγ/σc, where
Vc is the volume contained in the laser cavity (∼ 1 mm2 × 10 cm), γ is the spontaneous
decay rate (∼ 1/(10−4 sec)), σ is the transition cross-section (∼ 10−18 cm2), and c is the
speed of light. With these numbers, we Þnd q

(1)
sat ∼ 1010.
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Figure 7.2: Generalized ampliÞer model showing relevant population-changing
processes

quite large, and is only limited by the efficiency with which the pump can cre-

ate an inversion ∆No. The inversion will decrease as more and more photons

are pumped into the medium and the medium saturates, where saturation rep-

resents a statement of energy conservation, indicating the Þnite pump energy

and pump rate in any real system.

7.1.2 One-photon laser

Unlike an optical ampliÞer whose output results from single pass ampliÞcation

of a light beam, a laser�s output is light resulting from multiple passes through

an amplifying medium. In a laser oscillator, the photon number present in

the cavity can then change dramatically with time. The simplest possible

rate-equation model for laser transients (in either a one- or two-photon laser

model) then consists of a single Þrst order differential equation for the popula-

tion difference between lasing levels coupled to a single Þrst order differential

equation for the intensity or photon density. This is sufficiently accurate for
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most practical purposes, and yet the equations remain intuitive enough that

they are easily adapted to different laser systems. These laser models extend

the description of an ampliÞer in order to also account for the change in the

photon number q.

The basic form of the one-photon rate-equations couples ∆N , the popula-

tion inversion density between the two active levels, to the photon number q

according to the nonlinear system of equations [137]

dq

dt
= VaB

(1)(q + 1)∆N − γcq (7.4)

and

d∆N

dt
= −2B(1)q∆N − γ(∆N −∆No) . (7.5)

Here Va is the volume of the gain medium within the cavity mode and γc is the

cavity decay rate. Equation 7.4 explicitly includes the effect of spontaneous

emission. In a single mode cavity, approximately one photon exists at all times

due to spontaneous emission. The net emission rate into the cavity is then

proportional to the number of cavity photons plus one (q+1). In order to keep

the algebra simple and the solutions intuitive, we Þnd approximate steady-

state solutions both in the regime at low pump rates where q ¿ 1 and at

higher pump rates where q À 1. The limiting solutions must be consistent

with each other in the intermediate regime.

In any laser, a minimal requirement to initiate lasing forces the material

gain to equal the system loss. If the gain is large enough, a single spontaneously

emitted photon will multiply until the cavity photon number is large enough to

support lasing. One analytic indicator of lasing is given by the photon number
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increasing with time, so that dq/dt > 0. Equation 7.4 applied to the case where

the photon number is large (q+1 ' q) requires ∆N > γc/VaB
(1), so that laser

action is produced when the population inversion reaches a critical value given

by

∆Ncrit =
γc

VaB(1)
. (7.6)

When the pump rate (producing the inversion) is above the threshold value,

the photon number q grows from an initial value determined by spontaneous

emission and, for a constant pump, will eventually reach a constant value

qss. This steady-state value, and the corresponding steady-state value for the

inversion ∆Nss can be found by setting the time rate of change of the photon

number and the inversion equal to zero. Solving laser equations in steady-state

in this manner greatly simpliÞes the mathematics of the problem by reducing

the set of coupled differential equations to algebraic equations. The algebraic

equations can then be analytically or numerically solved for allowed photon

numbers and inversions as a function of the pumping in a very straightforward

manner.

Spontaneous regime

At low pump-rates where q ¿ 1, the spontaneously emitted photon plays a

critical role and, in fact, starts the transition to lasing. Equation 7.4 with

(q + 1) ' 1 gives
q =

VaB
(1)

γc
∆N =

∆N

∆Ncrit
¿ 1 , (7.7)

while Eq. 7.5 reduces to

∆N2

qsat∆Ncrit
+∆N −∆No = 0 . (7.8)
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However, since ∆N/∆Ncrit ¿ 1 at low pump rates and qsat is typically large,

the Þrst term in the above equation can be neglected to give

∆N ' ∆No (7.9)

and, from Eq. 7.7,

q ' ∆No
∆Ncrit

. (7.10)

Stimulated regime

To solve the steady-state rate-equations in the regime where stimulated emis-

sion is important (q À 1) we take (q + 1) ' q in Eq. 7.4. There are then two
possible solutions to this equation,

qss = 0 (7.11)

and

∆Nss =
γc

VaB(1)
= ∆Ncrit . (7.12)

Only the second solution can continuously match the solution in the sponta-

neous regime where the steady-state photon number is greater than zero, so Eq.

7.12 describes the system. The steady-state photon number above threshold is

then determined from Eqs. 7.3, 7.5 and 7.12 to be

qss = qsat

µ
∆No
∆Ncrit

− 1
¶
. (7.13)

The general behavior of the photon number and the inversion density in the

one-photon laser are sketched3 in Fig. 7.3. The one-photon rate-equations pre-

dict that above a certain pump level (which produces the threshold inversion)

3Although we have not explicitly shown it here, the approximate solutions found in the
different regimes must connect continuously in the intermediate region.
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Figure 7.3: Approximate steady-state behavior of the photon number and the
inversion above and below the one-photon laser threshold

the laser begins to operate, as evidenced by the growth of the photon num-

ber q from a very small initial value. This turn-on process occurs extremely

rapidly, yet smoothly. An important feature of the solution given by Eq. 7.12

and illustrated in Fig. 7.3b is that the inversion is clamped above threshold at

the critical value. Any increase in the pump rate above the critical value of

the threshold pump rate produces an increase in the number of photons in the

laser cavity, and not an increase in the inversion.

7.2 Two-photon rate-equations

After brießy summarizing both the procedure and the results derived from a

rate-equation model of one-photon ampliÞers and lasers, the analysis can now

be extended to describe two-photon ampliÞers and lasers. In order to model

two-photon transitions, we modify Eqs. 7.1, 7.4, and 7.5 by replacing the one-

photon stimulated emission rate B(1)q with the two-photon stimulated emission

rate B(2)q2 [138]. This new rate coefficient derives from a direct evaluation of
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the two-photon transition probability [139].

7.2.1 Two-photon ampliÞer model

For purposes of comparison, Þrst consider the simple case of an ampliÞer based

upon a two-photon gain medium. The inversion equation for the two-photon

ampliÞer (again under the approximation of an optically thin gain medium)

then looks quite similar to that for the one-photon laser, and reads

d∆N

dt
= −2B(2)q2∆N − γ(∆N − ∆No) . (7.14)

Solving in steady state gives

∆Nss =
∆No

1 + 2B(2)q2/γ
=

∆No
1 + q2/q2sat

, (7.15)

where the inversion is now explicitly labelled as a steady state quantity. Note

that qsat =
q
γ/2B(2) is deÞned as the two-photon saturation photon number,

in analogy with the standard one-photon saturation number. The saturation

number is simply a collection of constants whose value depends only on the

parameters of the transition and indicates when a stimulating wave is strong

or weak. A strong incident wave will signiÞcantly affect the population distri-

bution due to stimulated emission, while a weak wave has a negligible effect.

The two-photon saturation photon number is deÞned to occur when the two-

photon stimulated emission rate is equal to half the population decay rate. Its

physical meaning is then obvious: for qss = qsat, the steady-state inversion is

equal to one-half of the inversion created by the pump process in the absence

of a Þeld, ∆Nss = No/2.

Equation 7.15 is reminiscent of the steady-state inversion for a one-photon

ampliÞer (Eq. 7.2) except that the denominator is now quadratic, rather than
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linear, in q. The inversion again increases with the pump rate, and is lim-

ited only by the efficiency of the pumping scheme. The seemingly innocuous

quadratic term, however, serves to signiÞcantly modify the steady-state solu-

tions for a two-photon laser from those of a one-photon laser, as we will see

below.

7.2.2 Two-photon laser model

A description of a two-photon laser is found by extending the description of

a two-photon ampliÞer to include cavity effects. For simplicity, assume that

the two-photon laser operates in the degenerate mode, that the laser oscillates

in a single plane-wave mode, and that the cavity (population) decay rate γc

(γ) is much smaller than the atomic coherence dephasing rate. Under these

oversimplifying conditions, the behavior of the laser is described by the mean

photon number in the cavity q and the mean population inversion density ∆N

between the atomic levels that participate in the stimulated emission process.

The Þrst-order, coupled nonlinear differential equations governing the evolution

of these quantities are given by

dq

dt
= VaB

(2)q2∆N − γc(q − qinj(t)) (7.16)

and

d∆N

dt
= −2B(2)q2∆N − γ(∆N − ∆No) , (7.17)

where qinj(t) is the photon number injected into the cavity by an external

source.

The forte of rate-equations lies in the obvious physical interpretations of

their terms. Equation 7.16 indicates that the photon number increases due to



222

the two-photon stimulated emission process and by injection from the external

source, and decreases due to linear loss through the cavity mirrors. This ig-

nores the possibility of two-photon spontaneous emission processes at the laser

frequency because the emission rates are extremely small in the optical regime

[74]. This approximation is not valid for two-photon masers where the stim-

ulated and spontaneous rates are comparable [24]. Similarly, Eq. 7.17 states

that the inversion decreases in response to the stimulated emission process and

due to other radiative (at frequencies distinct from the laser frequency) and

nonradiative decay mechanisms, and increases due to the pump process.

The remainder of this chapter is devoted to a study of Eqs. 7.16 and

7.17. From them we Þnd the steady-state behavior of the laser and explore

the laser�s stability properties. We also directly integrate the equations under

various conditions in order to explore the transient behavior of the laser.

7.3 Derivation of the steady-state behavior

Under steady�state conditions, we Þnd from Eq. 7.17 that

∆Nss =
∆No

1 + 2B(2)q2ss/γ
=

∆No
1 + q2ss/q

2
sat

. (7.18)

This is identical to the solution found for the two-photon ampliÞer with q → qss.

The solution is not complete, however, because the equations for the inversion

and the photon number remain coupled. The inversion can be found explicitly

by Þrst substituting Eq. 7.18 into Eq. 7.16 to solve for the photon number (in

terms of the pump rate ∆No). For clarity, we explore the situation separately

for the case when the injected Þeld qinj is zero and when it is non-zero.
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Figure 7.4: Steady-state behavior of the cavity photon number and atomic
inversion with no injected Þeld

7.3.1 Steady-state equations for qinj = 0

For the case when qinj(t) = 0, there are three solutions to Eq. 7.16 given by

qoss = 0 (7.19)

and

q±ss =
γVa
4γc

·
∆No ±

q
∆N2

o − 16q2satγ2c/γ
2V 2a

¸
. (7.20)

The steady-state solutions are only physically meaningful when they are non-

negative real numbers. The physical solutions are plotted as a function of the

pump rate in Fig. 7.4. It is seen from Eq. 7.20 that ∆N th
o = 4qsatγc/γVa is

the minimum value of ∆No which admits a nonzero photon number, and hence

represents the threshold inversion. With this threshold inversion, the onset

of lasing occurs at the steady-state values q±ss = qsat and ∆Nss = 1/2 ∆N th
o .
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This is in agreement with the heuristic discussion of the threshold behavior

presented in the introduction.

There are a few basic behavioral similarities and differences between one-

photon lasers and ampliÞers and two-photon lasers and ampliÞers. The discon-

tinuous threshold behavior shown in Fig. 7.4 is indicative of a Þrst-order phase

transition, which is very different from the smooth turn-on behavior of nor-

mal one-photon lasers. Figure 7.4a demonstrates that the two-photon gain is

saturated at threshold, again in sharp contrast to the typical one-photon laser

which operates very far below saturation. Finally, recall that in the one-photon

ampliÞer the inversion increased linearly with the pump rate. In a one-photon

laser, adding a cavity dramatically affected the behavior and led to inversion

clamping in which the inversion remains constant at its threshold value even

for high pump rates. In a two-photon ampliÞer, the inversion again increases

with pump rate, and, by analogy one might expect inversion clamping above

threshold. In a two-photon laser, however, the inversion does not clamp above

threshold4. Figure 7.4b shows that the inversion is never constant, and is a

strong indication that a two-photon laser may display behavior dramatically

different from that of a one-photon laser.

4It is interesting to note that many early two-photon laser models predicted inversion
clamping very similar to that seen in the one-photon laser. These predictions resulted
from a restrictive �detailed balance� assumption for cavity losses, where mirror losses were
taken to be nonlinear and required two photons to escape the cavity at the same time. Such
a restriction proves unphysical and leads to incorrect results. For purposes of comparision
with these early models, however, we can mimic detailed balance in our model by modifying
Eq. 7.16 to read γcq → γcq

2, so that the cavity decay scales as the square of the photon
number. Our model then predicts inversion clamping.
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7.3.2 Dimensionless equations

The saturation and threshold parameters introduced earlier serve to deÞne the

natural scales for the parameters of the system. We translate the equations

to dimensionless units deÞned in terms of these natural units in order to look

more easily at the steady-states and stabilities of the solutions. Dimensionless

variables are indicated by tildes, and are found as follows. Photon numbers

are divided by the saturation photon number, giving

�qss ≡ qss
qsat

and �qinj ≡ qinj
qsat

; (7.21)

inversions are normalized to the threshold inversion, yielding

∆ �Nss ≡ ∆Nss
∆N th

o

and ∆ �No ≡ ∆No
∆N th

o

; (7.22)

and rates/times are normalized to the cavity decay rate, giving

�γ ≡ γ

γc
and �t ≡ t

tc
= tγc. (7.23)

With these deÞnitions, the rate-equations (Eqs. 7.16 and 7.17) transform to

d∆ �N

d�t
= −�γ�q2∆ �N − �γ(∆ �N −∆ �No) (7.24)

and

d�q

d�t
= 2�q2∆ �N − �q + �qinj . (7.25)

The qinj = 0 steady-state solutions given by Eqs. 7.19 and 7.20 can then be

rewritten as

�qoss = 0 (7.26)

and

�q±ss =
·
∆ �No ±

q
∆ �N2

o − 1
¸
. (7.27)
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7.3.3 Steady-state equations for �qinj 6= 0

For �qinj 6= 0, it is difficult to algebraically solve for the steady-state laser

behavior. Using the dimensionless variables, the steady-state inversion is

∆ �Nss =
∆ �No
1 + �q2ss

(7.28)

as before. The steady-state photon number, however, is found from the cubic

0 = �q3ss − �q2ss(2∆ �No + �qinj) + �qss − �qinj , (7.29)

which is not in general analytically solvable. It is known that a cubic with

real coefficients will always yield either three real roots or one real root and

a complex conjugate pair. From these roots, note that negative or imaginary

values of the steady-state photon number are nonphysical. The task, then,

is to numerically determine when �qss yields a positive real root and hence a

physically meaningful solution. These meaningful �qss solutions are later used

to perform a stability analysis of the solutions and determine the injection

threshold.

In general, both the pump rate ∆ �No and the injection parameter �qinj can

vary in a laser system, and any changes in these parameters will affect the

steady-state solutions. As a result, in an analysis of our system there are really

two different, though related, questions to address concerning the expected

laser behavior. First, how will the laser behave as the pump rate is varied

given a constant injected Þeld in the cavity? Second, what level of trigger

pulse must be injected for the laser to turn on at any given pump rate? The

next section responds to the Þrst issue, while the second issue becomes more

important in the transient regime and is addressed later in this chapter.
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Figure 7.5: Steady-state behavior of the laser showing hysteresis

Laser behavior with constant injected Þeld �qinj

We Þrst describe some representative behavior found by assuming injection of

a constant photon number of �qinj = 0.06 into the cavity. Figure 7.5 illustrates

that for small nonzero values of �qinj , the steady-state solution has the shape of

a typical bistability curve with three distinct branches, labelled (i), (ii), and

(iii). A laser in this regime exhibits hysteretic turn-on behavior. Suppose a

constant photon number (�qinj = 0.06 for the curve shown) is injected into the

cavity while the pump rate is varied from an initial value of zero. The laser

follows branch (i) until its turning point (labelled α), where branches (i) and

(ii), which were previously distinct positive real solutions, merge and become

a complex conjugate pair. The laser remains below the lasing threshold along

this lowest branch.
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Beyond the turning point, further increasing the pump rate causes the laser

to discontinuously jump to branch (iii). The upper branch has a high-photon

number and represents the lasing solution, and hence the turning point α

represents the laser turn-on threshold. With further increases in pump rate, the

state of the laser moves out along the upper branch as indicated. If the pump

rate is now decreased, the laser remains on the upper branch and continues

lasing even when the pump rate is decreased below the turn-on threshold. If,

however, the pump rate is lowered below the turning point between branches

(ii) and (iii) (labelled β), the laser is forced to jump back to the lowest branch

(i). The turning point β represents the turn-off threshold. In the regime with

three distinct branches, then, the laser threshold behavior displays distinct

hysteresis as the pump rate is varied while a constant Þeld is injected into

the cavity. Additionally, the jump from branch (i) to branch (iii) on turn-on

indicates a Þrst-order, discontinuous phase transition.

We expand the analysis by looking at the solutions for a few selected values

of a constant injected Þeld �qinj. In Fig. 7.6, note the progression of the steady-

state curves from a region in which there are three distinct branches to one in

which there is only a single branch. At this point, no hysteresis is seen with

changes in pump rate, but instead the laser turns on and off smoothly. Thus,

if the system is driven with a large enough injected Þeld (�qinj ≥ 0.20) it begins
to show a characteristic similar to a one-photon laser: a continuous, single-

valued steady-state solution. This continuous solution indicates a change in

the threshold behavior from a Þrst-order to a second-order phase transition.

Unpublished work with the dressed-state two-photon laser indicated that a

change in the phase-transition characterizing the system seems possible, though
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requires more study to make a deÞnitive assessment [140].

It is worth noting that the dimensionless steady-state equations for both

�qinj = 0 and �qinj 6= 0 are independent of �γ (the ratio between the atomic decay
rate and cavity decay rate), and hence the solutions are valid over the entire

range of cavity qualities. Cavity quality becomes important, however, in the

following sections that consider the stability of the steady-state solutions.

7.4 Linear stability analysis

Interesting instabilities in typical one-photon lasers have been found both the-

oretically and experimentally, and as a general rule the instabilities change

with increasing pumping strength [141]. The onset of laser action is typically

the Þrst instability. New instabilities occur at higher pumping strengths in

which either the intensity of the one lasing mode will start to oscillate or some

off-resonance modes will become unstable. The diverse and complex behav-

ior exhibited by typical lasers proves interesting both to researchers concerned

with the general mathematical modelling of nonlinear systems, and to those

concerned with the practical behavior of the lasers. Based on past experi-

ence with one-photon lasers, it is expected that the steady-state equations for

two-photon lasers may also have interesting stability properties.

7.4.1 Linearization procedure

We investigate the stability of the stationary solutions using a typical lineariza-

tion procedure, outlined below. Starting from Eqs. 7.24 and 7.25, perturb the

system�s dynamical variables around their respective steady-state values using

the substitutions �q → �qss + δq and ∆ �N → ∆ �Nss + δN . After performing this
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substitution and retaining only terms Þrst order in the small perturbations δq

and δN, this yields the linearized equations of motion,

d(δq)

d�t
= 2�q2ssδN + 4�qss∆ �Nssδq − δq (7.30)

and

dδN

d�t
= −�γ(�q2ssδN + 2�qss∆ �Nssδq + δN) . (7.31)

We solve these coupled equations for the eigenvalues of the system, because the

eigenvalues describe the response of the steady-state solutions to small pertur-

bations. If an applied perturbation decays away and the system returns to the

original solution, then that solution is said to be stable. If the perturbation

grows, then the solution is unstable.

Stability directly relates to the signs of the eigenvalues. If the real parts of

all the eigenvalues are negative, the steady-state of interest is stable and the

corresponding solution represents a physical and accessible state for the system.

If even one rate constant acquires a real positive value, the system is unstable

and will depart exponentially from the steady-state in response to an applied

perturbation. The signs of the real part of the eigenvalues thus determine the

absolute stability of the system, even if the eigenvalues are complex numbers.

Complex eigenvalues simply state that the growth or decay of any perturbations

will be oscillatory. A pure imaginary eigenvalue corresponds to a periodic

solution with Þxed amplitude oscillations.

Considering the above system in terms of matrices leads to a second-order

eigenvalue equation, where the eigenvalues (or rate constants) λ of the system

are found as the nonzero solutions to the characteristic equation

det

"
4�qss∆ �Nss − 1− λ 2�q2ss
−2�γ�qss∆ �Nss −�γ(�q2ss + 1)− λ

#
= 0 . (7.32)
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When expanded, the above determinant is a second order polynomial in λ,

λ2 + λB + C = 0 , (7.33)

where

B = �γ(�q2ss + 1)− 4�qss∆ �Nss + 1 (7.34)

and

C = �γ(�q2ss − 4�qss∆ �Nss + 1) . (7.35)

The roots of this equation, λ = 1
2
(−B±√B2 − 4C), give us the rate constants

λ. Note that the determination of the eigenvalues λ Þrst requires the compu-

tation of the steady-state values �qss and ∆ �Nss.We separately calculate �qss and

∆ �Nss for the case when the injected photon number is zero and when it is

nonzero.

7.4.2 Linear stability analysis for qinj = 0

For qinj = 0, the dimensionless steady-state solutions are given by Eqs. 7.18,

7.26, and 7.27. We summarize the results of a linear stability analysis of

these steady-state solutions below and explore the mathematical details in

what follows.

� The zero-photon solution (�qoss,∆ �No
ss) is always stable.

� The (�q−ss,∆ �N−
ss) solution, where the photon number decreases with in-

creasing pump rate, is always unstable.

� The (�q+ss,∆ �N+
ss) solution, where the photon number increases with in-

creasing pump rate, is always stable for a �good� cavity (γ/γc > 1).
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� The (�q+ss,∆ �N+
ss) solution is unstable for a �bad� cavity (γ/γc < 1) for

pumping just above threshold but stabilizes for higher pump rates.

Note that the �good� and �bad� cavity conditions are a constraint on the

cavity linewidth relative to the atomic decay rate, and should not be interpreted

literally to mean that the cavity design must be of high or low optical quality.

The �qoss solution is trivially shown to be stable. Using �q
o
ss = 0, the eigenvalue

equation (Eq. 7.33) simpliÞes to

λ = −(�γ + 1)
2

"
1±

s
�γ − 1
�γ + 1

#
. (7.36)

Since �γ > 0, the term in brackets always has a positive real part, and multi-

plication by the negative leading term yields eigenvalues λ which necessarily

have a negative real part, rendering this solution always stable. Two-photon

spontaneous emission, neglected here, can destabilize this solution.

To check the stability of the other equations, simply substitute the steady-

state values given by Eqs. 7.26 and 7.27 into the characteristic equation for

λ. Evaluation of Re(λ) determines the stability properties of the steady-state

solutions, since if Re(λ) has a positive real part the corresponding solution is

unstable. The eigenvalues are numerically evaluated, because even though in

principle the procedure is quite simple the algebra for this calculation becomes

rather messy. The �q−ss solution is unstable over the entire range of pump rates

and cavity goodness. The laser will thus not have output intensities given by

this solution.

The �q+ss solution, on the other hand, is generally stable and represents the

lasing output. Note that because the zero solution is also stable, some sort

of trigger will be needed to make the transition from the zero solution (the
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Figure 7.7: Stability boundary with no injected Þeld

typical initial condition where the laser is �off�) to the non-zero output intensity

solution. This is an indication that the two-photon laser is a bistable system,

and as such may have application in terms of optical switching.

The �q+ss solution is not, however, stable for all parameter values. In the

very bad-cavity limit (for �γ . 0.5), there exists a small region just above the

threshold pump rate where the solution is unstable, although the solution tends

to stabilize at higher pump rates. The stability boundary is shown in Fig. 7.7.

This result is inconsistent with the work of Ning et al. [105] and Heatley et al.

[109] who found that there is no stable lasing state in the bad-cavity limit. We

attribute the difference between results to our neglect of coherent effects based

on the work of Ref. [105].
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7.4.3 Linear stability analysis with qinj 6= 0

The steady-state solutions of Eqs. 7.28 and 7.29 have already been determined.

We now need to determine their stability properties when a continuous-wave

beam of photons is injected into the cavity (�qinj 6= 0). Using the same method
just described for the simpler case with no injected Þeld, we use the steady-state

values and Eqs. 7.30 and 7.31 to perform a linear stability analysis. Although

they yield the same characteristic equation for the eigenvalues λ as the zero-

injection case, the solution involves different values of the steady-state inversion

∆ �Nss and photon number �qss. As before, the eigenvalues for the linear stability

analysis must be negative for a stable solution, and complex eigenvalues are

perfectly valid.

Here we summarize the results of the linear stability analysis with qinj 6= 0.
A more careful discussion of the results is deferred to the next section, in which

there is also a discussion of how an injected Þeld can turn on the laser.

� The low-photon case, which used to be always stable, now abruptly desta-
bilizes past a critical value (determined in the next section) which is a

function of both the pump rate and the injected photon number.

� The mid-photon number case remains always unstable.

� The high-photon number case remains always stable in the good cavity
limit, and again has regions of instability in the bad cavity limit. The

instability boundary reproduces Fig. 7.7 in the limit �qinj = 0.
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Figure 7.8: Turn-on and turn-off thresholds as a function of injection

7.5 Injection Threshold

A study of the laser�s injection threshold allows a response to the question

posed in Sec. 7.3.3 asking what amplitude trigger is necessary to turn on the

laser for any given pump rate. In that section, the steady-state photon number

as a function of pump rate was explored when some constant beam of photons

was injected into the cavity. The laser displayed hysteresis, with discontinuous

turn-on and turn-off thresholds that vary with the injection amplitude.

We now reverse the problem and explicitly look at the laser threshold with

a variable injection and a Þxed pump rate. Figure 7.8 maps how the turn-

on and turn-off thresholds change with increasing injection. In relation to

what has been done previously, Fig. 7.8 maps how the critical points α and β

(described in conjunction with Fig. 7.5) vary as the injected photon number
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is varied. In the region above the turn-on threshold α the laser is on; in the

region below the turn-off threshold β the laser is off. In addition, recall from

Fig. 7.6 that at an injection rate above about �qinj = 0.20 the laser enters a

regime of continuous and smooth turn-on behavior. This appears as the point

where the two thresholds in Fig. 7.8 merge and end. A method for Þnding an

analytical expression for the threshold values is described below.

If, in Fig. 7.6, the axes are reversed in order to consider photon number

versus pump rate, the resulting curve is a function whose turning points are

easily found as its local maxima and minima. Yet these turning points are

exactly the critical points representing the turn-on and turn-off thresholds.

We thus solve Eq. 7.29 for ∆ �No,

∆ �No =
1

2

"
�q3ss − �qss − �qinj

�q2ss
− �qinj

#
, (7.37)

and take its derivative with respect to �qss,

d(∆ �No)

d(�qss)
=
1

2

"
�q4ss − �q2ss + 2�qss�qinj

�q4ss

#
. (7.38)

Setting the derivative equal to zero determines the critical points of the steady-

state photon number. The equation d(∆ �No)/d(�qss) = 0 is satisÞed for �qss =

�qcrit, where �qcrit is found from the cubic

�q3crit − �qcrit + 2�qinj = 0 . (7.39)

Figure 7.8 was generated from a numerical solution to this equation.

A reasonably simple analytic approximation to the turn-on curve sometimes

proves useful for performing back-of-the-envelope calculations. We arrive at

such an approximation as follows. In the regime with three distinct branches for

the steady-state photon number, note from Fig. 7.6 that �qcrit < 1. As a lowest
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order approximation, neglect the cubic term in Eq. 7.39 to get (�qcrit)
0 ' 2�qinj .

Then substitute this solution into Eq. 7.29 and solve for the critical injection

strength at a given pump rate ∆ �No to Þnd

�qinj = ∆ �No ± 1
2

q
4∆ �N2

o − 1 . (7.40)

The curve described by Eq. 7.40 well represents the exact critical injection

strength, as shown in Fig. 7.9.

We earlier described the hysteretic behavior of the laser as the pump rate

varied for a constant injected Þeld. As one would expect, similar hysteresis

is seen by exploring the laser behavior for a constant pump rate while the

injection amplitude is varied. In this case, it proves easiest to simultaneously

consider the steady-state solutions, a linear stability analysis of these solutions,

and the injection threshold in order to arrive at a comprehensive description
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of the laser behavior.

First recall the physically meaningful �qss solutions plotted in Fig. 7.6. For

low pumping rates, the only physical solution is that corresponding to the

laser remaining off, in analogy to the �qinj = 0 solution �q
o
ss. In this solution the

photon number remains close to the injected photon number and has very little

ampliÞcation due to spontaneous or stimulated emission. It is interesting to

note, however, that due to the presence of injected photons into the cavity the

threshold inversion is not equal to one, but rather ∆N th
o can be less than 1. (In

other words, the critical point β occurs at a normalized pump rate less than 1

for injection values above about �qinj = 0.13). This is understandable in terms

of the dual threshold condition. The threshold inversion is deÞned as that

needed to satisfy the threshold condition with cavity photon number �qsat just

sufficient to saturate the two-photon gain. Any injected photons then serve

to increase the cavity photon number above saturation, and correspondingly

decrease the necessary inversion. Figure 7.10 illustrates the injection threshold

for a good cavity (�γ = 2) as a function of both pump rate and injected photon

number.

For zero or low injection, over a range of pump rates around the pump

threshold there are three real solutions for the photon number corresponding

to the �qinj = 0 solutions �qoss, �q
+
ss, and �q

−
ss. Each of these solutions must be

individually tested for stability. Yet to determine the stability threshold, and

hence a true injection threshold, there are actually three parameters of inter-

est: ∆ �No, �qinj, and �γ
5. The system must be examined over a range of cavity

5Recall that when we found the steady-state solutions in Sec.7.3.3, the goodness of the
laser cavity deÞned by �γ played no role in the solutions. It only becomes important as we
explore the stability of these solutions.
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Figure 7.10: Variation of the injection threshold with pump rate

parameters from the good cavity limit to the bad cavity limit. Within this

range, for any given (Þxed) pump rate we Þnd: (i) whether a stable solution

ever exists; and (ii) if so, does it destabilize above or below a certain injection

value. As before, real negative eigenvalues of Eq. 7.33 deÞne stable solutions.

All stability calculations are performed numerically.

The mid-photon number solution is again found to be unstable for all pump

parameters, injected Þelds, and cavity values, and will thus never represent a

physical output state of the laser. The high-photon number solution, however,

is easily shown to be stable over the full range of injection parameters in the

good cavity limit. In the bad-cavity limit, however, the stability of the solution

is more complex, displaying regions of instability which vary with �γ and �qinj .

The limiting case �qinj → 0 reproduces the instability region shown in Fig. 7.7.

An interesting result is that when �γ is less than the critical value for stability
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with no injected photons (Fig. 7.7), the laser will also be unstable with injected

photons. In the region where the solutions are unstable, the laser will not turn

on for any values of the pump rate ∆ �No or injected photon number �qinj � it

remains below threshold.

So far, the laser stability behavior looks remarkably similar to the case

without injection and as such is rather uninteresting. New stability behav-

ior becomes evident only upon closer examination of the low-photon number

solution. For small pump rates this is the only solution and it displays uncon-

ditional stability. For higher pump rates two other solutions appear. Rather

than maintaining permanent stability, the low-power solution then increases

as �qinj increases and is only stable until it reaches a critical value, �q
th
inj. At

this point, the low- and mid-photon number solutions, which had been distinct

real solutions, merge and become a complex conjugate pair. This obviously

represents a loss of stability (or continued instability) for the solutions. As �qinj

increases beyond this point, the laser is forced to switch from the low-power

solution (now unstable) to the high-power solution (stable), and the laser turns

on. The point �qthinj thus deÞnes the minimum injected photon number necessary

to initiate lasing.

This threshold behavior is illustrated in Fig. 7.11, where three solutions

for the steady-state photon number are plotted for �qinj 6= 0 and a constant

pump rate of ∆ �No = 1.2. The results are described for the important case

when the laser is initially �off� and �qinj is increased slowly. The low power

solution (dashed curve) increases as �qinj increases and is stable until it reaches

the critical value �qthinj ' 0.11. This is the same critical value determined from
Fig. 7.10. As �qinj increases beyond this point, the state of the laser abruptly
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switches from low power to high-power, and the laser turns on. Threshold

is thus deÞned as the point where the lowest solution ends, and the arrows

indicate the progression of the laser from off to on. The dashed, solid, and

dotted-dashed curves are the solutions with �qinj 6= 0 corresponding to the

�qinj = 0 solutions �q0ss, �q
+
ss, and �q

−
ss respectively. The discontinuous threshold

behavior again indicates a Þrst-order phase transition. The behavior of the

laser as �qinj decreases depends on the quality of the cavity. For a good cavity,

the laser will continue to operate at high power as �qinj decreases. For a bad

cavity, the laser will only continue to operate at high power if the solution

remains stable with �qinj = 0.

In addition, we studied the stability behavior of the laser for various values

of the pump rate, and hence various injection thresholds �qthinj. The injection
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threshold decreases for higher values of the pump rate, as seen in Fig. 7.8 or

Fig. 7.9. Although it only reaches zero for an inÞnitely high pump rate, beyond

a certain point spontaneous emission will take the system above threshold and

the laser will turn on. This pump rate is, however, well beyond the range of

values at which most lasers operate. Future experimental work will test the

theoretical injection threshold values against the actual laser threshold.

7.5.1 Transient behavior of the laser

Although exploring the steady-state behavior and stability of the two-photon

laser proves extremely useful, it does not give any predictions concerning how

the state of the laser evolves from one solution to the next. Additional in-

sights are gained by examining dynamic phenomena in the laser, including the

buildup of coherent radiation caused by a pulsed excitation or small change in

excitation.

The transient behavior and response of the laser is explored by numerically

integrating Eqs. 7.25 and 7.24. We no longer assume a cw beam of a given

amplitude is injected into the laser; instead a square-like trigger pulse with

peak photon number qoinj is injected into the laser. The leading edge of the

pulse is modelled as a rising exponential, and the trailing edge as a falling

exponential. The rise- and fall-times are adjustable, as is the pulse amplitude

and the duration of the pulse itself.

For all of the trials, the laser must be able to adiabatically follow the tem-

poral variation of the pulse. This is true when the pulses turn on slowly and

remain on for at least a few characteristic lifetimes, where the relevant time

scale is the cavity lifetime. When the laser can adiabatically follow the tempo-
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Figure 7.12: Transient evolution of the photon number for pumping 20% above
threshold in the good cavity limit

ral variation of the pulse, the injection threshold is equal to that found in the

cw case, qoinj = q
th
inj . Pulses with rapid risetimes and short durations change

faster than the response time of the laser, and the injection threshold increases

accordingly (qoinj ≥ qthinj ). The observed injection threshold for rapid pulses

increased by as much as 10% over the minimum threshold.

The response of the laser for a good cavity is fairly straightforward, and

an example involving some typical parameter values can clarify the description

of the laser behavior. Figure 7.12 shows how the laser responds to injected

trigger pulses for a good cavity (γ/γc = 2) when the pump rate is greater

than the threshold pump rate (∆No = 1.2 ∆N th
o ) and when there are no

photons in the cavity initially. For a weak trigger pulse (peak amplitude qoinj =

0.1 qsat, Fig. 7.12a) the laser is not driven above threshold. The output pulse

is basically unchanged from the trigger pulse, which remains true until the
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pulse amplitude is very close to (or above) threshold. For a slightly stronger

pulse (peak amplitude qoinj = 0.12 qsat, Fig. 7.12b) the laser is driven above

threshold and attains a constant amplitude after the injected pulse switches

off. This is in good agreement with the injection threshold qthinj ' 0.11 qsat

calculated previously (see, for example, Fig. 7.11).

Quite different behavior is observed for the case of a bad cavity. We have

identiÞed three separate characteristic behaviors which correspond well with

the bad-cavity stability regions discussed earlier. As an illustrative example,

recall how the stability of the (q+ss,∆N
+
ss) solution changes with pump rate for

the case of a bad cavity, (γ/γc = 0.2). For pump rates just above threshold

(1 < ∆No/∆N
th
o . 1.26), the high power solution is unstable and hence an

injected pulse, no matter how strong, cannot turn on the laser. For higher

pump rates, 1.26 . ∆No/∆N
th
o . 2.3, the solution becomes stable and the

transient behavior of the laser displays large spiking in the initial turn-on and

damped relaxation oscillations as it approaches steady-state. The predicted

relaxation oscillations and transient spiking are entirely new behaviors and are

shown in Fig. 7.13. For even larger pump rates (∆No/∆N
th
o & 2.3) the system

settles to a stable steady-state in a single oscillation.

The good cavity transient behavior shown in the plots is reminiscent of

the experimental data on the dressed-state two-photon laser [18] with the ex-

ception that the rate-equation model does not predict the spiking during the

initial turn-on of the laser nor the oscillatory behavior of the laser. It is known

that models incorporating coherent effects lead to stable oscillating solutions

[105], although it is not clear whether these effects alone properly account for

the observed behavior. The initial spiking and damped oscillations seen in the



246

Time (sec)

0 40 80 120

Ph
ot

on
 n

um
be

r,
q/

q sa
t

0

2

4

6

Figure 7.13: Transient evolution of the photon number in the bad-cavity limit

bad cavity case more closely mimic the behavior observed in the dressed-state

two-photon laser experiments. However, it would be incorrect to conclude

that our model contains all of the correct physics for predicting this behavior,

because the experiment was conducted using a very good cavity. The experi-

mentally observed spiking behavior during turn-on remains an open question

because no previous work has speciÞcally investigated pulsed injection of a

continuous-wave two-photon laser. However, we suspect that the behavior can

be attributed to AC Stark shifts and coherent effects.

As a Þnal note, we should mention some transient solutions which baf-

ßed us for quite some time. For various cavity values γ, the laser displayed

periodic oscillations after the initial pulse switches off. Although the theory

allowed damped oscillations, it did not predict stable oscillations. It was only

in mapping out the region in γ and ∆No where these oscillations occurred
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that the error became clear. We had randomly chosen a �typical� pump value

∆No = 1.25 ∆N th
o for performing many of the numerical integrations. Un-

fortunately, this value turned out to be far from typical, because it exactly

corresponded to an eigenvalue with a zero real part. This led to stable oscilla-

tory solutions which are mathematically existent, but would be quite difficult

to realize in practice.

7.5.2 Limitations of our model

Although the simplicity of rate-equations is one of their largest assets, it is also

one of their greatest weaknesses: because the equations are reduced to bare

fundamentals, they provide an incomplete model of laser systems. Generally,

rate-equation results apply only when the laser is operating in a single cavity

mode, and they are often unable to describe the instabilities seen in real lasers.

In focusing only on the population and photon number, rate-equations also

ignore any coherence in the coupling between radiation and matter. Coherent

laser equations realize that light-matter interactions involve the coupling be-

tween optical waves and atomic dipoles, and determine the evolution of the ra-

diated Þeld through a polarization according to Maxwell�s equations. A speciÞc

limitation of our model is that it only considers the degenerate case, in which

both emitted photons have equal frequency. A more general model would start

with the non-degenerate case (though it does turn out that the degenerate case

is a limiting case of the non-degenerate one). We also used a two-level model

(as in the effective Hamiltonian model), rather than a three-level model which

includes the effect of the intermediate state on the two-photon transition. The

two-level model does not consider the inßuences of detunings or Stark shifts on
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laser stability or dynamic behavior. A more carefully accounting for the true

level structure in the gain medium or accounting for spatial variation of the

inversion and electromagnetic energy density are other ways we could increase

the accuracy of the rate-equation model.

Alternately, more complete treatments, such as the semiclassical and fully

quantum theories mentioned in the previous chapter, can be used to model

the system. Such treatments may include interactions ignored in the rate-

equation model. In general, semiclassical and quantum models are somewhat

more complicated than rate-equation models, but they include a more rigorous

physical description of the interaction between the Þelds and atoms. In the

appropriate limits, average results of a quantum treatment coincide with the

semiclassical treatment. Similarly, the semiclassical equations reduce to the

rate-equations in the case when the coherence dephasing times are much faster

than all other time constants in the system. We performed a density matrix

treatment of our experimental system in Chapter 5.

As mentioned at the beginning of this chapter, we chose to make our model

very simple, and ignore most of the effects just mentioned in order to get the

most intuitive, least mathematical solution. Despite this, it should prove a

reasonable qualitative description of the types of behavior one might expect to

see in a two-photon laser.



Chapter 8

Conclusions and Future Directions

This thesis has demonstrated the usefulness of Raman scattering for gener-

ating two-photon gain. I perform pump-probe spectroscopy in a laser-driven

potassium vapor and study the scattering processes expected to take place,

especially one-photon and two-photon Raman scattering. High gain relies on

the nonlinear interactions and coupling between the pump and probe laser

Þelds and the atomic gain medium. Under certain conditions, I observe ∼ 30%
two-photon gain in a potassium vapor cell.

Iperform a semiclassical analysis of driven three-level atoms which is used

to model the nonlinear interactions occurring in the potassium cell. I adapt

generalized density-matrix equations of motion to describe the experimental

system and use them to explicitly Þnd the level populations and coherences.

From these I also determine the atomic absorptive response, and compare the

theoretical response to the experimentally measured spectrum. The results are

in good qualitative agreement. Future work will reÞne the theory to carefully

account for all of the hyperÞne levels of potassium and propagation effects in

the cell.

249
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Although the experimental work to date focuses on the observation of

continuous-wave two-photon optical ampliÞcation, this should naturally lead

into a robust experimental realization of a two-photon laser. In order to help

understand the properties of such a laser, I present a simple rate-equation

theory of two-photon lasers in which I explore the equations describing the

cavity photon number and population inversion density as a function of time

in a pumped two-level system. I solve for the steady-states and determine

the stabilities of the calculated solutions. From the analysis, I expect the

two-photon laser to display novel threshold characteristics, including optical

bistability. These results are consistent with the behavior predicted from more

complicated models.

Current laboratory efforts are directed toward suppressing the minor com-

peting effects that occur simultaneously in the experimental system with the

desired Raman gain: self-defocusing and the background caused by the Rabi

gain. Both of these processes depend on the population in the 4P1/2 excited

state, so quenching this population serves to reduce the efficiency of these com-

peting processes relative to the Raman scattering. Reducing the excited state

population can be done by collisionally dephasing the 4S1/2 → 4P1/2 transition

using a buffer gas introduced into the potassium cell. Because the dephasing

rate of the electronic transition is large in comparison to the dephasing rate of

the coherence between the ground levels, collisions serve to quickly depopulate

the excited state. Preliminary results with both nitrogen and helium buffer

gases are quite promising. Both the self-focusing and Rabi gain can be virtu-

ally eliminated with only a small effect on the Raman gain. Further studies

are needed to determine optimal buffer gas pressures and the best choice of gas
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itself.

Use of a buffer gas is intended to optimize the Raman gain process through

reduction of competing effects. Yet the ability of a buffer gas to quickly depop-

ulate the 4P1/2 excited state also has potential for realizing two-photon gains

even higher than the 30% observed to date. The maximum gain is partially

limited by the amount of light that can be effectively scattered, which eventu-

ally boils down to how fast the atoms can be optically pumped into the F=1

ground state and hence used in a scattering process for producing gain. In

a gain medium of pure potassium, the spontaneous decay rate of the excited

state limits the optical pumping rate. With a buffer gas introduced into the

potassium, the effective excited-state decay rate becomes faster due to colli-

sionally induced excitation, and hence the optical pumping rate increases. This

positive buffer-gas side effect is still under investigation.

In the past, observed two-photon gain was so small as to prevent experi-

mental studies of single pass two-photon ampliÞcation. The high-gain system

described in this thesis should, however, make studies of this type feasible.

The apparatus is also well suited for investigating how the photon noise of a

beam of light is modiÞed by the two-photon ampliÞcation process. Work is

in progress to study the noise properties of saturated versus unsaturated one-

photon and two-photon Raman ampliÞcation and try to understand how the

nonlinear gain processes affect the noise properties and photon statistics of the

ampliÞed light. Few experimental studies on nonlinear optical ampliÞers have

been performed, and studies such as these should signiÞcantly contribute to

the pool of knowledge on this subject.

Reducing competing effects and studies of nonlinear optical ampliÞcation
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are two more steps toward a robust experimental realization a two-photon laser.

Continuing work is being done on the development of a two-photon laser based

on the two-photon Raman scattering process. Such a laser is expected to have

high gain, and a correspondingly high output power. This should facilitate

studies of the laser�s threshold behavior, noise properties, photon statistics,

and other quantities which are still very much unknown.
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